What is Newton Leibnitz formula with Examples ?
Newton Leibnitz formula If h(x) and g(x) are differentiable functions of x then, \(d\over dx\) \(\int_{g(x)}^{h(x)}\) f(t)dt = f[h(x)].h'(x) โ f[g(x)].g'(x) Example : Evaluate \(d\over dt\) \(\int_{t^2}^{t^3}\) \(1\over log x\) dx Solution : We have, \(d\over dt\) \(\int_{t^2}^{t^3}\) \(1\over log x\) dx = \(1\over log t^3\) \(d\over dt\) \((t^3)\) โ \(1\over log t^2\) \(d\over dt\) โฆ
What is Newton Leibnitz formula with Examples ? Read More ยป