What is walli’s formula in integration ?
Walli’s Formula : If m,n \(\in\) N & m, n \(\ge\) 2, then (a) \(\int_{0}^{\pi/2}\) \(sin^nx\)dx = \(\int_{0}^{\pi/2}\) \(cos^nx\)dx = \((n-1)(n-3)….(1 or 2)\over {n(n-2)….(1 or 2)}\) K where K = \(\begin{cases} \pi/2 & \text{if n is even}\ \\ 1 & \text{if n is odd}\ \end{cases}\) (b) \(sin^nx.cos^mx\)dx = \([(n-1)(n-3)….(1 or 2)][(m-1)(m-3)….(1 or 2)]\over {(m+n)(m+n-2)(m+n-4)….(1 or …