Solution :
0.7 + 0.77 + 0.777 + …… + upto 20 terms
= \(7\over 10\) + \(77\over 10^2\) + \(777\over 10^3\) + ….. + upto 20 terms
= 7[ \(1\over 10\) + \(11\over 10^2\) + \(111\over 10^3\) + ….. + upto 20 terms ]
= \(7\over 9\)[ \(9\over 10\) + \(99\over 100\) + \(999\over 1000\) + ….. + upto 20 terms ]
= \(7\over 9\)[ (1 – \(1\over 10\)) + (1 – \(1\over 10^2\)) + (1 – \(1\over 10^3\)) + ….. + upto 20 terms ]
= \(7\over 9\){n – (\(1\over 10\) + \(1\over 10^2\) + ….. + \(1\over 10^n\)}
= \(7\over 9\)[n – \(1\over 10\)\((1 – ({1\over 10})^n)\over (1 – {1\over 10})\)]
= \(7\over 9\){\(9n – 1 + {1\over 10^n}\)}
Similar Questions
If x, y and z are in AP and \(tan^{-1}x\), \(tan^{-1}y\) and \(tan^{-1}z\) are also in AP, then
Find the sum of n terms of the series 1.3.5 + 3.5.7 + 5.7.9 + ……