Solution :
We have, I = \((log x)^2\) . 1 dx, Then ,
where \((log x)^2\) is the first function and 1 is the second function according to ilate rule,
I = \((log x)^2\) { \(\int\) 1 dx} โ \(\int\) {\(d\over dx\) \((log x)^2\) . \(\int\) 1 dx } dx
I = \((log x)^2\) x โ \(\int\) 2 log x . \(1\over x\) . x dx
I = x \((log x)^2\) โ 2 \(\int\) log x .1 dx
\(\implies\) I = x \((log x)^2\) โ 2[ log x { \(\int\) 1 dx } โ \(\int\) { \(d\over dx\) (log x) \(\int\) 1 dx } dx ]
\(\implies\) I = x \((log x)^2\) โ 2 { (log x) x โ \(\int\) \(1\over x\) x dx }
Hence, I = x( \((log x)^2\) โ 2 (x log x โ x) + C
Similar Questions
What is the integration of log cos x dx ?
What is the integration of log 1/x ?