What is the integration of sec inverse root x ?

Solution :

We have, I = \(sec^{-1}\sqrt{x}\) dx

Let x = \(sec^2t\)

dx = \(2sec^2 t tan t\) dt

I = t.\(2sec^2 t tan t\) dt

u = tย  and v = \(tan^2 t\)

I = \(\int\) u.dv = u.v โ€“ \(\int\) v.du = \(t.tan^2 t\) โ€“ \(\int\) \(tan^2 t\) dt

I = \(t.tan^2 t\) โ€“ \(\int\) \(sec^2 t โ€“ 1\) dt

I = \(t.tan^2 t\) โ€“ \(\int\) \(sec^2 t\) + \(int\) 1 dt

I = \(t.tan^2 t\) โ€“ tan t + t + C = \(t.sec^2 t\) โ€“ tan t + C

I = \(xsec^{-1}\sqrt{x}\) โ€“ \(\sqrt{sec^2t โ€“ 1}\) + C

I = \(xsec^{-1}\sqrt{x}\) โ€“ \(\sqrt{x โ€“ 1}\) + C


Similar Questions

What is the integration of cos inverse root x ?

What is the integration of x cos inverse x ?

What is integration of sin inverse cos x ?

What is the integration of sin inverse root x ?

What is the integration of sin inverse x whole square ?

Leave a Comment

Your email address will not be published. Required fields are marked *

Ezoicreport this ad