Solution :
We have, I = \(sec^{-1}\sqrt{x}\) dx
Let x = \(sec^2t\)
dx = \(2sec^2 t tan t\) dt
I = t.\(2sec^2 t tan t\) dt
u = tย and v = \(tan^2 t\)
I = \(\int\) u.dv = u.v โ \(\int\) v.du = \(t.tan^2 t\) โ \(\int\) \(tan^2 t\) dt
I = \(t.tan^2 t\) โ \(\int\) \(sec^2 t โ 1\) dt
I = \(t.tan^2 t\) โ \(\int\) \(sec^2 t\) + \(int\) 1 dt
I = \(t.tan^2 t\) โ tan t + t + C = \(t.sec^2 t\) โ tan t + C
I = \(xsec^{-1}\sqrt{x}\) โ \(\sqrt{sec^2t โ 1}\) + C
I = \(xsec^{-1}\sqrt{x}\) โ \(\sqrt{x โ 1}\) + C
Similar Questions
What is the integration of cos inverse root x ?
What is the integration of x cos inverse x ?
What is integration of sin inverse cos x ?