What is the integration of x sin inverse x dx ?

Solution :

We have, I = \(\int\)ย  \(x sin^{-1} x\) dx

By using integration by parts formula,

I = \(sin^{-1} x\) \(x^2\over 2\) โ€“ \(\int\) \(1\over \sqrt{1 โ€“ x^2}\) \(\times\) \(x^2\over 2\) dx

I =ย  \(x^2\over 2\) \(sin^{-1} x\) + \(1\over 2\) \(\int\) \(-x^2\over \sqrt{1 โ€“ x^2}\) dx

= \(x^2\over 2\) \(sin^{-1} x\) + \(1\over 2\) \(\int\) \(1 โ€“ x^2 โ€“ 1\over \sqrt{1 โ€“ x^2}\)ย  dx

= \(x^2\over 2\) \(sin^{-1} x\) + \(1\over 2\) { \(\int\) \(1 โ€“ x^2\over \sqrt{1 โ€“ x^2}\) โ€“ \(\int\) \(1\over \sqrt{1 -x^2}\) } dx

\(\implies\) I = \(x^2\over 2\) \(sin^{-1} x\) + \(1\over 2\) { \(\int\) \(\sqrt{1 โ€“ x^2}\) โ€“ \(\int\) \(1\over \sqrt{1 -x^2}\) } dx

By using integration formula of \(\sqrt{a^2 โ€“ x^2}\),

\(\implies\) I = \(x^2\over 2\) \(sin^{-1} x\) + \(1\over 2\) [{ \(1\over 2\) \(x\sqrt{1 โ€“ x^2}\) โ€“ \(1\over 2\) \(sin^{-1} x\) } โ€“ \(sin^{-1} x\) ] + C

\(\implies\) I = \(x^2\over 2\) \(sin^{-1} x\) +ย  \(1\over 4\) \(x\sqrt{1 โ€“ x^2}\) โ€“ \(1\over 4\) \(sin^{-1} x\) + C


Similar Questions

What is the integration of sin inverse root x ?

What is the integration of sin inverse x whole square ?

What is integration of sin inverse cos x ?

What is the integration of tan inverse root x ?

What is the integration of x tan inverse x dx ?

Leave a Comment

Your email address will not be published. Required fields are marked *

Ezoicreport this ad