{"id":10339,"date":"2022-04-01T17:14:43","date_gmt":"2022-04-01T11:44:43","guid":{"rendered":"https:\/\/mathemerize.com\/?p=10339"},"modified":"2022-04-05T18:24:14","modified_gmt":"2022-04-05T12:54:14","slug":"use-euclids-division-algorithm-to-find-the-h-c-f-of","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/use-euclids-division-algorithm-to-find-the-h-c-f-of\/","title":{"rendered":"Use Euclid’s division algorithm to find the H.C.F of :"},"content":{"rendered":"
Question<\/strong> : Use Euclid’s division algorithm to find the H.C.F of :<\/p>\n (i) 135 and 225<\/p>\n (ii) 196 and 38220<\/p>\n (iii) 865 and 225<\/p>\n Solution<\/strong> :<\/p>\n (i)<\/strong> We start with the larger number 225.<\/p>\n By Euclid’s Division Algorithm, we have<\/p>\n 225 = 135 \\(\\times\\) 1 + 90<\/p>\n We apply Euclid’s Division Algorithm on<\/p>\n Division 135 and the remainder 90.<\/p>\n 135 = 90 \\(\\times\\) 1 + 45<\/p>\n Again we apply Euclid’s Division Algorithm on Divisor 90 and remainder 45<\/p>\n 90 = 45 \\(\\times\\) 2 + 0<\/p>\n H.C.F(225, 90) = 45<\/p>\n So, H.C.F.\u00a0 of\u00a0 225 and 135 is 45.<\/p>\n (ii)<\/strong> We have :<\/p>\n Division = 38200 and Divisor 196<\/p>\n 38220 = 196 \\(\\times\\) 195 + 0<\/p>\n Hence, H.C.F. (196, 38220) = 196<\/p>\n (iii)<\/strong> By Euclid’s Division Algorithm, we have<\/p>\n 867 = 255 \\(\\times\\) 3 + 102<\/p>\n We apply Euclid’s Division Algorithm on the<\/p>\n Divisor 255 and the remainder 102.<\/p>\n 255 = 102 \\(\\times\\) 2 + 51<\/p>\n Again we apply Euclid’s Division Algorithm on the divisor 102 and the remainder 51.<\/p>\n 102 = 51 \\(\\times\\) 2 + 0<\/p>\n H.C.F (867, 255) = H.C.F(255, 102) = H.C.F(102, 51) = 51.<\/p>\n","protected":false},"excerpt":{"rendered":" Question : Use Euclid’s division algorithm to find the H.C.F of : (i) 135 and 225 (ii) 196 and 38220 (iii) 865 and 225 Solution : (i) We start with the larger number 225. By Euclid’s Division Algorithm, we have 225 = 135 \\(\\times\\) 1 + 90 We apply Euclid’s Division Algorithm on Division 135 …<\/p>\n