{"id":10431,"date":"2022-04-09T20:57:11","date_gmt":"2022-04-09T15:27:11","guid":{"rendered":"https:\/\/mathemerize.com\/?p=10431"},"modified":"2022-04-09T22:32:34","modified_gmt":"2022-04-09T17:02:34","slug":"without-actually-performing-the-long-division-state-whether-the-following-rational-numbers-will-have-a-terminating-decimal-expansion-or-a-non-terminating-repeating-decimal-expansion","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/without-actually-performing-the-long-division-state-whether-the-following-rational-numbers-will-have-a-terminating-decimal-expansion-or-a-non-terminating-repeating-decimal-expansion\/","title":{"rendered":"Without actually performing the long division, state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion :"},"content":{"rendered":"
Question<\/strong> : Without actually performing the long division, state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion :<\/p>\n (i) \\(13\\over 3125\\)<\/p>\n (ii) \\(17\\over 8\\)<\/p>\n (iii) \\(64\\over 455\\)<\/p>\n (iv) \\(15\\over 1600\\)<\/p>\n (v) \\(29\\over 343\\)<\/p>\n (vi) \\(23\\over {2^3 5^2}\\)<\/p>\n (vii) \\(129\\over {2^2 5^7 7^5}\\)<\/p>\n (viii) \\(6\\over 15\\)<\/p>\n (ix) \\(35\\over 50\\)<\/p>\n (x) \\(77\\over 210\\)<\/p>\n Solution<\/strong> :<\/p>\n (i)<\/strong> Since the factors of the denominator 3125 are \\(2^0 \\times 5^5\\). Therefore \\(13\\over 3125\\) is a terminating decimal<\/strong>.<\/p>\n (ii)<\/strong> Since the factors of the denominator 8 are \\(2^3 \\times 5^0\\). So, \\(17\\over 8\\) is a terminating decimal<\/strong>.<\/p>\n (iii)<\/strong> Since the factors of the denominator 455 is not in the form \\(2^n \\times 5^m\\). Therefore \\(64\\over 55\\) is a non-terminating repeating decimal<\/strong>.<\/p>\n (iv)<\/strong> Since the factors of the denominator 1600 are \\(2^6 \\times 5^2\\). Therefore \\(15\\over 1600\\) is a terminating decimal<\/strong>.<\/p>\n (v)<\/strong> Since the factors of the denominator 343 is not of the form \\(2^n \\times 5^m\\). Therefore it is a non-terminating repeating decimal<\/strong>.<\/p>\n (vi)<\/strong> Since the factors of the denominator is of form \\(2^3 \\times 5^2\\). Therefore it is a terminating decimal<\/strong>.<\/p>\n (vii)<\/strong> Since the factors of the denominator \\(2^2 \\times 5^7 \\times 7^5\\) is not of the form \\(2^n \\times 5^m\\). Therefore it is a non-terminating repeating decimal<\/strong>.<\/p>\n (viii)<\/strong> \\(16\\over 5\\) = \\(2\\over 5\\) here the factors of the denominator 5 are \\(2^0 \\times 5^1\\). Therefore it is a terminating decimal<\/strong>.<\/p>\n (ix)<\/strong> Since the factors of the denominator 50 are \\(2^1 \\times 5^2\\). Therefore \\(35\\over 30\\) is a terminating decimal<\/strong>.<\/p>\n (x)<\/strong> Since the factors of the denominator 210 is not of the form \\(2^n \\times 5^m\\). Therefore \\(77\\over 210\\) is a non-terminating rrepeating decimal<\/strong>.<\/p>\n","protected":false},"excerpt":{"rendered":" Question : Without actually performing the long division, state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion : (i) \\(13\\over 3125\\) (ii) \\(17\\over 8\\) (iii) \\(64\\over 455\\) (iv) \\(15\\over 1600\\) (v) \\(29\\over 343\\) (vi) \\(23\\over {2^3 5^2}\\) (vii) \\(129\\over {2^2 5^7 7^5}\\) (viii) \\(6\\over 15\\) (ix) …<\/p>\n