{"id":11280,"date":"2022-07-01T00:54:19","date_gmt":"2022-06-30T19:24:19","guid":{"rendered":"https:\/\/mathemerize.com\/?p=11280"},"modified":"2022-07-01T00:55:16","modified_gmt":"2022-06-30T19:25:16","slug":"in-the-figure-if-lm-cb-and-ln-cd-prove-that-amover-ab-anover-ad","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/in-the-figure-if-lm-cb-and-ln-cd-prove-that-amover-ab-anover-ad\/","title":{"rendered":"In the figure, if LM || CB and LN || CD, prove that \\(AM\\over AB\\) = \\(AN\\over AD\\)."},"content":{"rendered":"
In triangle ABC,<\/p>\n
Given,\u00a0 \u00a0 \u00a0 \u00a0 LM || CB<\/p>\n
By Basic proportionality theorem, we have<\/p>\n
\\(AM\\over AB\\) = \\(AL\\over AC\\)\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0……..(1)<\/p>\n
In triangle ACD,<\/p>\n
Given,\u00a0 \u00a0 \u00a0 \u00a0 LN || CD<\/p>\n
By Basic proportionality theorem, we have<\/p>\n
\\(AL\\over AC\\) = \\(AN\\over AD\\)\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0……..(2)<\/p>\n
From (1) and (2), we obtain that<\/p>\n
\\(AM\\over AB\\) = \\(AN\\over AD\\)<\/strong><\/p>\n","protected":false},"excerpt":{"rendered":" Solution : In triangle ABC, Given,\u00a0 \u00a0 \u00a0 \u00a0 LM || CB By Basic proportionality theorem, we have \\(AM\\over AB\\) = \\(AL\\over AC\\)\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0……..(1) In triangle ACD, Given,\u00a0 \u00a0 \u00a0 \u00a0 LN || CD By Basic proportionality theorem, we have \\(AL\\over AC\\) = \\(AN\\over AD\\)\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0……..(2) From …<\/p>\n