{"id":11288,"date":"2022-07-01T01:05:10","date_gmt":"2022-06-30T19:35:10","guid":{"rendered":"https:\/\/mathemerize.com\/?p=11288"},"modified":"2022-07-01T01:05:13","modified_gmt":"2022-06-30T19:35:13","slug":"in-the-figure-de-oq-and-df-or-show-that-ef-qr","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/in-the-figure-de-oq-and-df-or-show-that-ef-qr\/","title":{"rendered":"In the figure, DE || OQ and DF || OR. Show that EF || QR."},"content":{"rendered":"
In triangle PQO,<\/p>\n
Given,\u00a0 \u00a0 \u00a0 \u00a0 DE || OQ<\/p>\n
By Basic proportionality theorem, we have<\/p>\n
\\(PE\\over EQ\\) = \\(PD\\over DO\\)\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0……..(1)<\/p>\n
In triangle POR,<\/p>\n
Given,\u00a0 \u00a0 \u00a0 \u00a0 DF ||\u00a0 OR<\/p>\n
By Basic proportionality theorem, we have<\/p>\n
\\(PD\\over DO\\) = \\(PF\\over FR\\)\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0……..(2)<\/p>\n
From (1) and (2), we obtain that<\/p>\n
\\(PE\\over EQ\\) = \\(PF\\over FR\\)<\/p>\n
Hence, By converse of basic proportionality theorem, we have<\/p>\n
EF || QR<\/strong><\/p>\n","protected":false},"excerpt":{"rendered":" Solution : In triangle PQO, Given,\u00a0 \u00a0 \u00a0 \u00a0 DE || OQ By Basic proportionality theorem, we have \\(PE\\over EQ\\) = \\(PD\\over DO\\)\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0……..(1) In triangle POR, Given,\u00a0 \u00a0 \u00a0 \u00a0 DF ||\u00a0 OR By Basic proportionality theorem, we have \\(PD\\over DO\\) = \\(PF\\over FR\\)\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0……..(2) From …<\/p>\n