{"id":11338,"date":"2022-07-07T20:05:42","date_gmt":"2022-07-07T14:35:42","guid":{"rendered":"https:\/\/mathemerize.com\/?p=11338"},"modified":"2022-07-07T20:05:47","modified_gmt":"2022-07-07T14:35:47","slug":"in-the-figure-qrover-qs-qtover-pr-and-angle-1-angle-2-show-that-triangle-pqs-triangle-tqr","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/in-the-figure-qrover-qs-qtover-pr-and-angle-1-angle-2-show-that-triangle-pqs-triangle-tqr\/","title":{"rendered":"In the figure, \\(QR\\over QS\\) = \\(QT\\over PR\\) and \\(\\angle\\) 1 = \\(\\angle\\) 2. Show that \\(\\triangle\\) PQS ~ \\(\\triangle\\) TQR."},"content":{"rendered":"
Given,\u00a0 \\(QR\\over QS\\) = \\(QT\\over PR\\)<\/p>\n
So, \\(QT\\over QR\\) = \\(PR\\over QS\\)\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0……….(1)<\/p>\n
Also given,\u00a0 \\(\\angle\\) 1 = \\(\\angle\\) 2<\/p>\n
Since, sides opposite to equal \\(\\angle\\)s are equal,<\/p>\n
So , PR = PQ\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 ………(2)<\/p>\n
From (1) and (2), we get<\/p>\n
\\(QT\\over QR\\) = \\(PQ\\over QS\\)\u00a0 \u00a0 \u00a0 or\u00a0 \u00a0 \\(PQ\\over QT\\) = \\(QS\\over QR\\)<\/p>\n
In \\(\\triangle\\)s PQS and TQR, we have :<\/p>\n
\\(PQ\\over QT\\) = \\(QS\\over QR\\)\u00a0 \u00a0 \u00a0and\u00a0 \u00a0 \\(\\angle\\) PQS = \\(\\angle\\) TQR\u00a0 = \\(\\angle\\) Q<\/p>\n
Hence, By SAS criterion of similarity, \\(\\triangle\\) PQS ~ \\(\\triangle\\) TQR<\/strong><\/p>\n","protected":false},"excerpt":{"rendered":" Solution : Given,\u00a0 \\(QR\\over QS\\) = \\(QT\\over PR\\) So, \\(QT\\over QR\\) = \\(PR\\over QS\\)\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0……….(1) Also given,\u00a0 \\(\\angle\\) 1 = \\(\\angle\\) 2 Since, sides opposite to equal \\(\\angle\\)s are equal, So , PR = PQ\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 ………(2) From (1) and (2), we get \\(QT\\over …<\/p>\n