{"id":11377,"date":"2022-07-08T01:09:58","date_gmt":"2022-07-07T19:39:58","guid":{"rendered":"https:\/\/mathemerize.com\/?p=11377"},"modified":"2022-07-08T01:10:03","modified_gmt":"2022-07-07T19:40:03","slug":"sides-ab-and-ac-and-median-ad-of-a-triangle-abc-are-respectively-proportional-to-sides-pq-and-pr-and-median-pm-of-another-triangle-pqr-show-that-triangle-abc-triangle-pqr","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/sides-ab-and-ac-and-median-ad-of-a-triangle-abc-are-respectively-proportional-to-sides-pq-and-pr-and-median-pm-of-another-triangle-pqr-show-that-triangle-abc-triangle-pqr\/","title":{"rendered":"Sides AB and AC and median AD of a triangle ABC are respectively proportional to sides PQ and PR and median PM of another triangle PQR. Show that \\(\\triangle\\) ABC ~ \\(\\triangle\\) PQR."},"content":{"rendered":"
Given<\/strong> : \\(\\triangle\\) ABC and \\(\\triangle\\) PQR in which AD and PM are the medians, such that<\/p>\n \\(AB\\over PQ\\) = \\(BC\\over QR\\) = \\(AD\\over PM\\)<\/p>\n To prove<\/strong> : \u00a0\\(\\triangle\\) ABC ~ \\(\\triangle\\) PQR<\/p>\n Proof<\/strong> : \\(AB\\over PQ\\) = \\(BC\\over QR\\) = \\(AD\\over PM\\)<\/p>\n \\(\\implies\\)\u00a0 \\(AB\\over PQ\\) = \\({1\\over 2}BC\\over {1\\over 2}QR\\) = \\(AD\\over PM\\)<\/p>\n \\(\\implies\\) \\(AB\\over PQ\\) = \\(BD\\over QM\\) = \\(AD\\over PM\\)<\/p>\n By SSS similarity,<\/p>\n \\(\\triangle\\) ABD ~ \\(\\triangle\\) PQM<\/p>\n \\(\\implies\\) \\(\\angle\\) B = \\(\\angle\\) Q<\/p>\n Now, in triangle ABC and PQR, we have<\/p>\n \\(AB\\over PQ\\) = \\(BC\\over QR\\)\u00a0 \u00a0 \u00a0 \u00a0 \u00a0(given)<\/p>\n and\u00a0 \\(\\angle\\) B = \\(\\angle\\) Q<\/p>\n So, By SAS similarity,<\/p>\n \\(\\triangle\\) ABC ~ \\(\\triangle\\) PQR<\/strong><\/p>\n","protected":false},"excerpt":{"rendered":" Solution : Given : \\(\\triangle\\) ABC and \\(\\triangle\\) PQR in which AD and PM are the medians, such that \\(AB\\over PQ\\) = \\(BC\\over QR\\) = \\(AD\\over PM\\) To prove : \u00a0\\(\\triangle\\) ABC ~ \\(\\triangle\\) PQR Proof : \\(AB\\over PQ\\) = \\(BC\\over QR\\) = \\(AD\\over PM\\) \\(\\implies\\)\u00a0 \\(AB\\over PQ\\) = \\({1\\over 2}BC\\over {1\\over 2}QR\\) = \\(AD\\over …<\/p>\n