{"id":11410,"date":"2022-07-08T22:34:49","date_gmt":"2022-07-08T17:04:49","guid":{"rendered":"https:\/\/mathemerize.com\/?p=11410"},"modified":"2022-07-08T22:42:52","modified_gmt":"2022-07-08T17:12:52","slug":"if-the-areas-of-two-similar-triangles-are-equal-then-the-triangles-are-congruent-i-e-equal-and-similar-triangles-are-congruent","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/if-the-areas-of-two-similar-triangles-are-equal-then-the-triangles-are-congruent-i-e-equal-and-similar-triangles-are-congruent\/","title":{"rendered":"If the areas of two similar triangles are equal, then the triangles are congruent, i.e. equal and similar triangles are congruent."},"content":{"rendered":"
Given<\/strong> : \\(\\triangle\\) ABC ~ \\(\\triangle\\) DEF such that \\(area(\\triangle ABC)\\) = \\(area(\\triangle DEF)\\)<\/p>\n To Prove<\/strong> : \\(\\triangle\\) ABC \\(\\cong\\) \\(\\triangle\\)\u00a0 DEF<\/p>\n Proof<\/strong> : Since, the ratio of the area of two similar triangles is equal to the ratio of the square of\u00a0 two corresponding sides.<\/p>\n \\(area(\\triangle ABC)\\over area(\\triangle DEF)\\) = \\({AB}^2\\over {DE}^2\\) = \\({AC}^2\\over {DF}^2\\) = \\({BC}^2\\over {EF}^2\\)<\/p>\n Given, \\(area(\\triangle ABC)\\) = \\(area(\\triangle DEF)\\)<\/p>\n \\({AB}^2\\over {DE}^2\\) = \\({AC}^2\\over {DF}^2\\) = \\({BC}^2\\over {EF}^2\\) = 1<\/p>\n \\({AB}^2\\) = \\({DE}^2\\), \\({AC}^2\\) = \\({DF}^2\\) and \\({BC}^2\\) = \\({EF}^2\\)<\/p>\n AB = DE, AC = DF and BC = EF<\/p>\n By SSS theorem of congruence,<\/p>\n \\(\\triangle\\) ABC \\(\\cong\\) \\(\\triangle\\)\u00a0 DEF<\/strong><\/p>\n","protected":false},"excerpt":{"rendered":" Solution : Given : \\(\\triangle\\) ABC ~ \\(\\triangle\\) DEF such that \\(area(\\triangle ABC)\\) = \\(area(\\triangle DEF)\\) To Prove : \\(\\triangle\\) ABC \\(\\cong\\) \\(\\triangle\\)\u00a0 DEF Proof : Since, the ratio of the area of two similar triangles is equal to the ratio of the square of\u00a0 two corresponding sides. \\(area(\\triangle ABC)\\over area(\\triangle DEF)\\) = \\({AB}^2\\over {DE}^2\\) …<\/p>\n