{"id":11504,"date":"2022-07-12T22:57:01","date_gmt":"2022-07-12T17:27:01","guid":{"rendered":"https:\/\/mathemerize.com\/?p=11504"},"modified":"2022-07-12T22:57:04","modified_gmt":"2022-07-12T17:27:04","slug":"d-and-e-are-points-on-the-sides-ca-and-cb-respectively-of-a-triangle-abc-right-angled-at-c-prove-that-ae2-bc2-ab2-de2","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/d-and-e-are-points-on-the-sides-ca-and-cb-respectively-of-a-triangle-abc-right-angled-at-c-prove-that-ae2-bc2-ab2-de2\/","title":{"rendered":"D and E are points on the sides CA and CB respectively of a triangle ABC right angled at C. Prove that \\({AE}^2\\) + \\({BC}^2\\) = \\({AB}^2\\) + \\({DE}^2\\)."},"content":{"rendered":"
From triangle ACE,<\/p>\n
\\({AE}^2\\) = \\({EC}^2\\) + \\({AC}^2\\)\u00a0 \u00a0 \u00a0 \u00a0……….(1)\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 (By Pythagoras Theorem)<\/p>\n
From triangle DCB,<\/p>\n
\\({BD}^2\\) = \\({BC}^2\\) + \\({DC}^2\\)\u00a0 \u00a0 \u00a0 \u00a0 ………(2)<\/p>\n
Adding (1) and (2), we get<\/p>\n
\\({AE}^2\\) + \\({BD}^2\\) = \\({EC}^2\\) + \\({AC}^2\\) + \\({BC}^2\\) + \\({DC}^2\\)<\/p>\n
By Pythagoras Theorem in right triangle ECD and ABC, \\({DE}^2\\) = \\({EC}^2\\) + \\({DC}^2\\)\u00a0 and\u00a0 \\({AB}^2\\) = \\({BC}^2\\) + \\({AC}^2\\)<\/p>\n
Hence,\u00a0 \\({AE}^2\\) + \\({BC}^2\\) = \\({AB}^2\\) + \\({DE}^2\\)<\/strong><\/p>\n","protected":false},"excerpt":{"rendered":" Solution : From triangle ACE, \\({AE}^2\\) = \\({EC}^2\\) + \\({AC}^2\\)\u00a0 \u00a0 \u00a0 \u00a0……….(1)\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 (By Pythagoras Theorem) From triangle DCB, \\({BD}^2\\) = \\({BC}^2\\) + \\({DC}^2\\)\u00a0 \u00a0 \u00a0 \u00a0 ………(2) Adding (1) and (2), we get \\({AE}^2\\) + \\({BD}^2\\) = \\({EC}^2\\) + \\({AC}^2\\) + \\({BC}^2\\) + \\({DC}^2\\) By Pythagoras Theorem in right triangle …<\/p>\n