{"id":11513,"date":"2022-07-12T23:15:08","date_gmt":"2022-07-12T17:45:08","guid":{"rendered":"https:\/\/mathemerize.com\/?p=11513"},"modified":"2022-07-12T23:15:12","modified_gmt":"2022-07-12T17:45:12","slug":"tick-the-correct-answer-and-justify-in-triangle-ab-6sqrt3-cm-ac-12-cm-and-bc-6-cm-the-angle-is-i-120-ii-60-iii-90-iv-45","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/tick-the-correct-answer-and-justify-in-triangle-ab-6sqrt3-cm-ac-12-cm-and-bc-6-cm-the-angle-is-i-120-ii-60-iii-90-iv-45\/","title":{"rendered":"Tick the correct answer and justify : In \\(\\triangle\\), AB = \\(6\\sqrt{3}\\) cm, AC = 12 cm and BC = 6 cm. The angle is : (i) 120 (ii) 60 (iii) 90 (iv) 45"},"content":{"rendered":"
In triangle ABC, we have :<\/p>\n
AB = \\(6\\sqrt{3}\\) cm , AC = 12 cm<\/p>\n
and BC = 6 cm<\/p>\n
Now, \\({AB}^2\\) + \\({BC}^2\\) = \\((6\\sqrt{3})^2\\) + \\((6)^2\\)<\/p>\n
= \\(36 \\times 3\\) + 36 = 108 + 36 = 144 = \\((AC)^2\\)<\/p>\n
Thus, triangle ABC is a right angled triangle at B.<\/p>\n
\\(\\therefore\\)\u00a0 \\(\\angle\\) B = 90<\/p>\n","protected":false},"excerpt":{"rendered":"
Solution : In triangle ABC, we have : AB = \\(6\\sqrt{3}\\) cm , AC = 12 cm and BC = 6 cm Now, \\({AB}^2\\) + \\({BC}^2\\) = \\((6\\sqrt{3})^2\\) + \\((6)^2\\) = \\(36 \\times 3\\) + 36 = 108 + 36 = 144 = \\((AC)^2\\) Thus, triangle ABC is a right angled triangle at B. \\(\\therefore\\)\u00a0 …<\/p>\n