{"id":11541,"date":"2022-07-18T14:38:02","date_gmt":"2022-07-18T09:08:02","guid":{"rendered":"https:\/\/mathemerize.com\/?p=11541"},"modified":"2022-07-18T14:38:07","modified_gmt":"2022-07-18T09:08:07","slug":"in-the-figure-d-is-a-point-on-hypotenuse-ac-of-triangle-abc-bd-perp-ac-dm-perp-bc-and-dn-perp-ab-prove-that-i-dm2-dn-mc-ii-dn2-dm-an","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/in-the-figure-d-is-a-point-on-hypotenuse-ac-of-triangle-abc-bd-perp-ac-dm-perp-bc-and-dn-perp-ab-prove-that-i-dm2-dn-mc-ii-dn2-dm-an\/","title":{"rendered":"In the figure, D is a point on hypotenuse AC of \\(\\triangle\\) ABC, BD \\(\\perp\\) AC, DM \\(\\perp\\) BC and DN \\(\\perp\\) AB. Prove that (i) \\({DM}^2\\) = DN.MC (ii) \\({DN}^2\\) = DM.AN"},"content":{"rendered":"
We have : AB \\(\\perp\\) BC and DM \\(\\perp\\) BC.<\/p>\n
So,\u00a0 \u00a0 \u00a0 \u00a0 AB || DM<\/p>\n
Similarly, we have :<\/p>\n
BC \\(\\perp\\) AB and DN \\(\\perp\\) AB.<\/p>\n
So,\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 CB || DN<\/p>\n
Hence, quadrilateral BMDN is a rectangle.<\/p>\n
\\(\\therefore\\)\u00a0 BM = DN<\/p>\n
(i)<\/strong>\u00a0 In triangle BMD, we have :<\/p>\n \\(\\angle\\)1 + \\(\\angle\\) BMD + \\(\\angle\\)2 = 180<\/p>\n or\u00a0 \\(\\angle\\)1 + 90 + \\(\\angle\\)2 = 180<\/p>\n \\(\\implies\\)\u00a0 \\(\\angle\\)1 + \\(\\angle\\)2 = 90<\/p>\n Similarly, in triangle BMC, we have :<\/p>\n \\(\\angle\\)3 + \\(\\angle\\)4 = 90<\/p>\n Since BD \\(\\perp\\) AC, therefore<\/p>\n \\(\\angle\\)2 + \\(\\angle\\)3 = 90<\/p>\n Now, \\(\\angle\\)1 + \\(\\angle\\)2 = 90\u00a0 \u00a0and\u00a0 \\(\\angle\\)2 + \\(\\angle\\)3 = 90<\/p>\n \\(\\therefore\\)\u00a0 \\(\\angle\\)1 + \\(\\angle\\)2 = \\(\\angle\\)2 + \\(\\angle\\)3<\/p>\n So,\u00a0 \\(\\angle\\)1 = \\(\\angle\\)3<\/p>\n Also,\u00a0 \\(\\angle\\)3 + \\(\\angle\\)4 = \\(\\angle\\)2 + \\(\\angle\\)3\u00a0 \\(\\implies\\)\u00a0 \\(\\angle\\)2 = \\(\\angle\\)4<\/p>\n Thus, in triangles BMD and BMC, we have :<\/p>\n \\(\\angle\\)1 = \\(\\angle\\)3\u00a0 \u00a0and\u00a0 \\(\\angle\\)2 = \\(\\angle\\)4<\/p>\n \\(\\therefore\\) By AA similarity, we have :<\/p>\n \\(\\triangle\\) BMD ~ \\(\\triangle\\) DMC<\/p>\n So,\u00a0 \\(BM\\over DM\\) = \\(MD\\over MC\\)<\/p>\n Since, BM = ND,<\/p>\n \\(\\implies\\)\u00a0 \\(DN\\over DM\\) = \\(DM\\over MC\\)<\/p>\n So, \\({DM}^2\\) = DN.MC<\/strong><\/p>\n (ii)<\/strong>\u00a0 Proceeding as in (i), we can prove that<\/p>\n \\(\\triangle\\) BND ~ \\(\\triangle\\) AND<\/p>\n So,\u00a0 \\(BN\\over DN\\) = \\(ND\\over NA\\)<\/p>\n Since, BN = DM,<\/p>\n \\(\\implies\\)\u00a0 \\(DM\\over DN\\) = \\(DN\\over AN\\)<\/p>\n So, \\({DN}^2\\) = DN.MC<\/strong><\/p>\n","protected":false},"excerpt":{"rendered":" Solution : We have : AB \\(\\perp\\) BC and DM \\(\\perp\\) BC. So,\u00a0 \u00a0 \u00a0 \u00a0 AB || DM Similarly, we have : BC \\(\\perp\\) AB and DN \\(\\perp\\) AB. So,\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 CB || DN Hence, quadrilateral BMDN is a rectangle. \\(\\therefore\\)\u00a0 BM = DN (i)\u00a0 In triangle BMD, we have : …<\/p>\n