{"id":11617,"date":"2022-08-02T14:27:13","date_gmt":"2022-08-02T08:57:13","guid":{"rendered":"https:\/\/mathemerize.com\/?p=11617"},"modified":"2022-08-02T14:27:21","modified_gmt":"2022-08-02T08:57:21","slug":"if-sin-a-3over-4-calculate-cos-a-and-tan-a","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/if-sin-a-3over-4-calculate-cos-a-and-tan-a\/","title":{"rendered":"If Sin A = \\(3\\over 4\\), Calculate Cos A and Tan A."},"content":{"rendered":"
Consider a triangle ABC in which \\(\\angle\\) B = 90<\/p>\n
For \\(\\angle\\) A, we have :<\/p>\n
Base = AB, Perpendicular = BC and Hypotenuse = AC,<\/p>\n
\\(\\therefore\\)\u00a0 Sin A = \\(perpendicular\\over hypotenuse\\) = \\(BC\\over AC\\) = \\(3\\over 4\\)<\/p>\n
Let BC = 3k and AC = 4k,<\/p>\n
Then,\u00a0 \\({AB}^2\\) = \\({AC}^2 – {BC}^2\\) = \\(\\sqrt{7}\\)<\/p>\n
\\(\\therefore\\)\u00a0 cos A = \\(Base\\over Hypotenuse\\) = \\(AB\\over AC\\) = \\(\\sqrt{7}\\over 4\\)<\/strong><\/p>\n and\u00a0 tan A = \\(perpendicular\\over hypotenuse\\) = \\(BC\\over AB\\) = \\(3\\over \\sqrt{7}\\)<\/strong><\/p>\n","protected":false},"excerpt":{"rendered":" Solution : Consider a triangle ABC in which \\(\\angle\\) B = 90 For \\(\\angle\\) A, we have : Base = AB, Perpendicular = BC and Hypotenuse = AC, \\(\\therefore\\)\u00a0 Sin A = \\(perpendicular\\over hypotenuse\\) = \\(BC\\over AC\\) = \\(3\\over 4\\) Let BC = 3k and AC = 4k, Then,\u00a0 \\({AB}^2\\) = \\({AC}^2 – {BC}^2\\) = …<\/p>\n