{"id":11630,"date":"2022-08-03T20:37:14","date_gmt":"2022-08-03T15:07:14","guid":{"rendered":"https:\/\/mathemerize.com\/?p=11630"},"modified":"2022-08-03T20:37:22","modified_gmt":"2022-08-03T15:07:22","slug":"given-15-cot-a-8-find-sin-a-and-sec-a","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/given-15-cot-a-8-find-sin-a-and-sec-a\/","title":{"rendered":"Given 15 cot A = 8, find sin A and sec A."},"content":{"rendered":"
We have,<\/p>\n
15 cot A = 8\u00a0 \\(\\implies\\)\u00a0 cot A = \\(8\\over 15\\)<\/p>\n
Draw a right triangle ABC,<\/p>\n
cot A = \\(AB\\over BC\\) = \\(8\\over 15\\)<\/p>\n
If BC = 15k, then AB = 8k, where k is any positive number.<\/p>\n
By using Pythagoras Theorem,<\/p>\n
\\({AC}^2\\) = \\({AB}^2\\) + \\({BC}^2\\)<\/p>\n
= \\(64k^2\\) + \\(225k^2\\) = \\(289k^2\\)<\/p>\n
\\(\\implies\\)\u00a0 AC = 17k<\/p>\n
Thus, sin\u00a0 A = \\(BC\\over AC\\) = \\(15k\\over 17k\\) = \\(15\\over 17\\)<\/strong><\/p>\n sec A = \\(AC\\over AB\\) = \\(!7k\\over 8k\\) = \\(17\\over 8\\)<\/strong><\/p>\n","protected":false},"excerpt":{"rendered":" Solution : We have, 15 cot A = 8\u00a0 \\(\\implies\\)\u00a0 cot A = \\(8\\over 15\\) Draw a right triangle ABC, cot A = \\(AB\\over BC\\) = \\(8\\over 15\\) If BC = 15k, then AB = 8k, where k is any positive number. By using Pythagoras Theorem, \\({AC}^2\\) = \\({AB}^2\\) + \\({BC}^2\\) = \\(64k^2\\) + \\(225k^2\\) …<\/p>\n