{"id":11632,"date":"2022-08-03T20:41:37","date_gmt":"2022-08-03T15:11:37","guid":{"rendered":"https:\/\/mathemerize.com\/?p=11632"},"modified":"2022-08-03T20:41:45","modified_gmt":"2022-08-03T15:11:45","slug":"given-sec-theta-13over-12-calculate-all-other-trigonometric-ratios","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/given-sec-theta-13over-12-calculate-all-other-trigonometric-ratios\/","title":{"rendered":"Given \\(sec \\theta\\) = \\(13\\over 12\\), calculate all other trigonometric ratios."},"content":{"rendered":"
Consider a triangle ABC in which \\(\\angle\\) A = \\(\\theta\\) and \\(\\angle\\) B = 90<\/p>\n
Then, Base = AB, perp = BC and Hypo. = AC,<\/p>\n
\\(\\therefore\\)\u00a0 \\(sec \\theta\\) = \\(perp\\over hypo\\) = \\(BC\\over AC\\) = \\(3\\over 4\\)<\/p>\n
Let AC = 13k and AB = 12k. Then,<\/p>\n
By using Pythagoras Theorem,<\/p>\n
\\({BC}^2\\) = \\({AC}^2\\) – \\({AB}^2\\)<\/p>\n
= \\(169k^2\\) – \\(125k^2\\) = \\(25k^2\\)<\/p>\n
\\(\\implies\\) BC = 5k<\/p>\n
\\(sin \\theta\\) = \\(BC\\over AC\\) = \\(5\\over 13\\)<\/strong><\/p>\n \\(cos \\theta\\) = \\(AB\\over AC\\) = \\(12\\over 13\\)<\/strong><\/p>\n \\(tan \\theta\\) = \\(BC\\over AB\\) = \\(5\\over 12\\)<\/strong><\/p>\n \\(cot \\theta\\) = \\(AB\\over BC\\) = \\(12\\over 5\\)<\/strong><\/p>\n \\(cosec \\theta\\) = \\(AC\\over BC\\) = \\(13\\over 5\\)<\/strong><\/p>\n","protected":false},"excerpt":{"rendered":" Solution : Consider a triangle ABC in which \\(\\angle\\) A = \\(\\theta\\) and \\(\\angle\\) B = 90 Then, Base = AB, perp = BC and Hypo. = AC, \\(\\therefore\\)\u00a0 \\(sec \\theta\\) = \\(perp\\over hypo\\) = \\(BC\\over AC\\) = \\(3\\over 4\\) Let AC = 13k and AB = 12k. Then, By using Pythagoras Theorem, \\({BC}^2\\) = …<\/p>\n