{"id":11889,"date":"2022-08-31T16:49:51","date_gmt":"2022-08-31T11:19:51","guid":{"rendered":"https:\/\/mathemerize.com\/?p=11889"},"modified":"2022-08-31T16:50:55","modified_gmt":"2022-08-31T11:20:55","slug":"express-the-trigonometric-ratios-sin-a-sec-a-and-tan-a-in-terms-of-cot-a","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/express-the-trigonometric-ratios-sin-a-sec-a-and-tan-a-in-terms-of-cot-a\/","title":{"rendered":"Express the trigonometric ratios sin A, sec A, and tan A in terms of cot A."},"content":{"rendered":"
We know that\u00a0 \u00a0\\(cosec^2 A\\) = 1 + \\(cot^2 A\\)<\/p>\n
\\(\\implies\\)\u00a0 \u00a0\\(1\\over sin^2 A\\) = 1 + \\(cot^2 A\\)\u00a0 \u00a0\\(\\implies\\)\u00a0 \\(sin^2 A\\) = \\(1\\over 1 + cot^2 A\\)<\/p>\n
\\(\\implies\\)\u00a0 sin A = \\(1\\over \\sqrt{1 + cot^2 A}\\)<\/strong><\/p>\n Also,\u00a0 we know that\u00a0 \\(sec^2 A\\) = 1 + \\(tan^2 A\\)<\/p>\n \\(\\implies\\)\u00a0 \\(sec^2 A\\) = 1 + \\(1\\over cot^2 A\\)<\/p>\n \\(\\implies\\)\u00a0 \\(sec^2 A\\) = \\(cot^2 A + 1\\over cot^2 A\\)<\/p>\n \\(\\implies\\)\u00a0 sec A = \\(\\sqrt{cot^2 A + 1}\\over cot A\\)<\/strong><\/p>\n Also, we know that, tan A = \\(1\\over cot A\\)<\/strong><\/p>\n","protected":false},"excerpt":{"rendered":" Solution : We know that\u00a0 \u00a0\\(cosec^2 A\\) = 1 + \\(cot^2 A\\) \\(\\implies\\)\u00a0 \u00a0\\(1\\over sin^2 A\\) = 1 + \\(cot^2 A\\)\u00a0 \u00a0\\(\\implies\\)\u00a0 \\(sin^2 A\\) = \\(1\\over 1 + cot^2 A\\) \\(\\implies\\)\u00a0 sin A = \\(1\\over \\sqrt{1 + cot^2 A}\\) Also,\u00a0 we know that\u00a0 \\(sec^2 A\\) = 1 + \\(tan^2 A\\) \\(\\implies\\)\u00a0 \\(sec^2 A\\) = 1 …<\/p>\n