{"id":11911,"date":"2022-09-03T21:38:26","date_gmt":"2022-09-03T16:08:26","guid":{"rendered":"https:\/\/mathemerize.com\/?p=11911"},"modified":"2022-09-03T21:38:30","modified_gmt":"2022-09-03T16:08:30","slug":"write-the-other-trigonometric-ratios-of-a-in-terms-of-sec-a","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/write-the-other-trigonometric-ratios-of-a-in-terms-of-sec-a\/","title":{"rendered":"Write the other trigonometric ratios of A in terms of sec A."},"content":{"rendered":"
Consider a triangle ABC, in which \\(\\angle\\) B = 90<\/p>\n
For \\(\\angle\\) A, we have :<\/p>\n
Base = AB,<\/p>\n
Perp = BC<\/p>\n
and Hyp = AC<\/p>\n
\\(\\therefore\\)\u00a0 \u00a0 sec A = \\(Hyp\\over Base\\) = \\(AC\\over AB\\)<\/p>\n
So,\u00a0 \\(AC\\over AB\\)\u00a0 = sec A = \\(sec A\\over 1\\)<\/p>\n
Let AB = k and AC = k sec A<\/p>\n
So,\u00a0 BC = \\(\\sqrt{{AC}^2 – {AB}^2}\\) = \\(k\\sqrt{sec^2 A – 1}\\)<\/p>\n
Now, sin A = \\(BC\\over AB\\) = \\(\\sqrt{sec^2 A – 1}\\over sec A\\)<\/strong><\/p>\n cos A = \\(AB\\over AC\\) = \\(1\\over sec A\\)<\/strong><\/p>\n tan A = \\(BC\\over AB\\) = \\(\\sqrt{sec^2 A – 1}\\)<\/strong><\/p>\n cot A = \\(1\\over tan A\\) = \\(1\\over \\sqrt{sec^2 A – 1}\\)<\/strong><\/p>\n cosec A = \\(1\\over sin A\\) = \\(sec A\\over \\sqrt{sec^2 A – 1}\\)<\/strong><\/p>\n","protected":false},"excerpt":{"rendered":" Solution : Consider a triangle ABC, in which \\(\\angle\\) B = 90 For \\(\\angle\\) A, we have : Base = AB, Perp = BC and Hyp = AC \\(\\therefore\\)\u00a0 \u00a0 sec A = \\(Hyp\\over Base\\) = \\(AC\\over AB\\) So,\u00a0 \\(AC\\over AB\\)\u00a0 = sec A = \\(sec A\\over 1\\) Let AB = k and AC = …<\/p>\n