{"id":12631,"date":"2022-12-20T18:58:34","date_gmt":"2022-12-20T13:28:34","guid":{"rendered":"https:\/\/mathemerize.com\/?p=12631"},"modified":"2022-12-20T18:58:48","modified_gmt":"2022-12-20T13:28:48","slug":"if-the-median-of-the-distribution-given-below-is-28-5-find-the-value-of-x-and-y","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/if-the-median-of-the-distribution-given-below-is-28-5-find-the-value-of-x-and-y\/","title":{"rendered":"If the median of the distribution given below is 28.5, find the value of x and y."},"content":{"rendered":"\n
Class Interval<\/td> | 0 – 10<\/td> | 10 – 20<\/td> | 20 – 30<\/td> | 30 – 40<\/td> | 40 – 50<\/td> | 50 – 60<\/td> | Total<\/td><\/tr> | ||||||||||||||||||||||||
Frequency<\/td> | 5<\/td> | x<\/td> | 20<\/td> | 15<\/td> | y<\/td> | 5<\/td> | 60<\/td><\/tr><\/tbody><\/table><\/figure>\n\n\n\nSolution :<\/h2>\n\n\n\nHere, it is given that median is 28.5<\/p>\n\n\n\n and n = 60<\/p>\n\n\n\n We now prepare the following cumulative frequency table :<\/p>\n\n\n\n Here, n = 60 So, \\(n\\over 2\\) = 30<\/p>\n\n\n\n Since the median is given to be 28.5, thus the median class is (20 – 30).<\/p>\n\n\n\n \\(\\therefore\\) l = 20, h = 10, f = 20 and cf = 5 + x<\/p>\n\n\n\n \\(\\therefore\\) Median = l + (\\({n\\over 2} – cf\\over f\\)) \\(\\times\\) h<\/p>\n\n\n\n \\(\\implies\\) 28.5 = 20 + \\(30 – (5 + x)\\over 20\\) \\(\\times\\) 10<\/p>\n\n\n\n \\(\\implies\\) 57 = 40 + 28 – x \\(\\implies\\) x = 65 – 57 = 8<\/p>\n\n\n\n Also, 45 + x + y = 60<\/p>\n\n\n\n So, y = 7<\/p>\n\n\n\n Hence, x = 8 and y = 7<\/strong>.<\/p>\n","protected":false},"excerpt":{"rendered":" Question : Class Interval 0 – 10 10 – 20 20 – 30 30 – 40 40 – 50 50 – 60 Total Frequency 5 x 20 15 y 5 60 Solution : Here, it is given that median is 28.5 and n = 60 We now prepare the following cumulative frequency table : Class …<\/p>\n |