{"id":12644,"date":"2022-12-20T23:52:47","date_gmt":"2022-12-20T18:22:47","guid":{"rendered":"https:\/\/mathemerize.com\/?p=12644"},"modified":"2022-12-20T23:52:51","modified_gmt":"2022-12-20T18:22:51","slug":"the-following-table-gives-the-distribution-of-the-life-time-of-400-neon-lamps-find-the-median-life-time-of-a-lamp","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/the-following-table-gives-the-distribution-of-the-life-time-of-400-neon-lamps-find-the-median-life-time-of-a-lamp\/","title":{"rendered":"The following table gives the distribution of the life time of 400 neon lamps. Find the median life time of a lamp."},"content":{"rendered":"\n
Life time (in hours)<\/td> | Number of lamps<\/td><\/tr> | ||||||||||||||||||||||||
1500 – 2000<\/td> | 14<\/td><\/tr> | ||||||||||||||||||||||||
2000 – 2500<\/td> | 56<\/td><\/tr> | ||||||||||||||||||||||||
2500 – 3000<\/td> | 60<\/td><\/tr> | ||||||||||||||||||||||||
3000 – 3500<\/td> | 86<\/td><\/tr> | ||||||||||||||||||||||||
3500 – 4000<\/td> | 74<\/td><\/tr> | ||||||||||||||||||||||||
4000 – 4500<\/td> | 62<\/td><\/tr> | ||||||||||||||||||||||||
4500 – 5000<\/td> | 48<\/td><\/tr><\/tbody><\/table><\/figure>\n\n\n\nSolution :<\/h2>\n\n\n\nFirst, we prepare the following table to compute the median :<\/p>\n\n\n\n We have : n = 400 So, \\(n\\over 2\\) = 200<\/p>\n\n\n\n The cumulative frequency just greater than \\(n\\over 2\\) is 216 and the corresponding class is (3000 – 3500). Thus, it is the median class.<\/p>\n\n\n\n Here, l = 3000, cf = 130, f = 86 and h = 500.<\/p>\n\n\n\n Substituting these values in the formula,<\/p>\n\n\n\n Median = l + (\\({n\\over 2} – cf\\over f\\))\\(\\times\\)h, we have :<\/p>\n\n\n\n Median = 3000 + \\(70\\over 86\\) \\(\\times\\) 500 = 3000 + 406.98 = 3406.98<\/p>\n\n\n\n Hence, median life time is 3406.98 hours<\/strong>.<\/p>\n","protected":false},"excerpt":{"rendered":" Question : Life time (in hours) Number of lamps 1500 – 2000 14 2000 – 2500 56 2500 – 3000 60 3000 – 3500 86 3500 – 4000 74 4000 – 4500 62 4500 – 5000 48 Solution : First, we prepare the following table to compute the median : Life time (in hours) Number …<\/p>\n |