{"id":3096,"date":"2021-07-18T12:52:40","date_gmt":"2021-07-18T12:52:40","guid":{"rendered":"https:\/\/mathemerize.com\/?p=3096"},"modified":"2021-11-26T01:35:59","modified_gmt":"2021-11-25T20:05:59","slug":"formula-for-integration-by-parts","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/formula-for-integration-by-parts\/","title":{"rendered":"What is the Formula for Integration by Parts ?"},"content":{"rendered":"

Formula for Integration by Parts<\/h2>\n

If u and v are two functions of x, then the formula for integration by parts is –<\/p>\n

\n

\\(\\int\\) u.v dx = u \\(\\int\\) v dx – \\(\\int\\)[\\(du\\over dx\\).\\(\\int\\)v dx]dx<\/p>\n<\/blockquote>\n

i.e The integral of the product of two functions = (first function) \\(\\times\\) (Integral of Second function) – Integral of { (Diff. of first function) \\(\\times\\) (Integral of Second function)}<\/p>\n

Note<\/strong> –\u00a0 We can choose the first function as the function which comes first in the word ILATE,\u00a0<\/strong>where\u00a0<\/p>\n

\n

I – Stands for the Inverse Trigonometric Function<\/p>\n

L – Stands for the Logarithmic Function<\/p>\n

A – Stands for the Algebraic Function<\/p>\n

T – Stands for the Trigonometric Function<\/p>\n

E – Stands for the Exponential Function<\/p>\n<\/blockquote>\n\n\n

Example : <\/span> Solve the integral \\(\\int\\) \\(x sin3x\\) dx using the formula for integration by parts.<\/p>\n

Solution : <\/span>Here both the functions viz. x and sin3x are easily integrable and the derivative of x is one, a less complicated function. Therefore, we take x as the first function and sin3x as the second function.

\n\\(\\therefore\\) I = \\(\\int\\) x cos3x dx

\n= x [\\(\\int\\) sin3x dx] – \\(\\int\\)[\\({d\\over dx}(x)\\) \\(\\times\\) \\(\\int\\)sin3x dx] dx

\n= x (\\(-1\\over 3\\) cos3x) – \\(\\int\\) [\\(-1\\over 3\\) cos3x] dx

\n\\(\\implies\\) I = \\(-1\\over 3\\) xcos3x + \\(1\\over 3\\) \\(\\int\\) cos3x dx

\n\\(\\implies\\) I = -\\(1\\over 3\\) xcos3x + \\(1\\over 9\\) sin3x + C

\n<\/p>\n\n\n\n

Example : <\/span> Solve the integral \\(\\int\\) \\(x sin^{-1}x\\) dx using the formula for integration by parts.<\/p>\n

Solution : <\/span>Taking \\(sin^{-1}x\\) as the first function and x as the second function by using the ILATE rule.

\nI = \\(\\int\\) \\(x sin^{-1}x\\)

\n= (\\(sin^{-1}x\\))\\(x^2\\over 2\\) – \\(\\int\\)[\\(1\\over \\sqrt{1-x^2}\\) \\(\\times\\) \\(x^2\\over 2\\)] dx

\n= \\(x^2\\over 2\\)(\\(sin^{-1}x\\)) + \\(1\\over 2\\) \\(\\int\\)[\\((-x)^2\\over \\sqrt{1-x^2}\\) dx = \\(x^2\\over 2\\)(\\(sin^{-1}x\\)) + \\(1\\over 2\\) \\(\\int\\)[\\({1-x^2-1}\\over \\sqrt{1-x^2}\\) dx

\n\\(\\implies\\) I = \\(x^2\\over 2\\)(\\(sin^{-1}x\\)) + \\(1\\over 2\\) {\\(\\int\\)[\\({1-x^2}\\over \\sqrt{1-x^2}\\) dx – \\(1\\over \\sqrt{1-x^2}\\) dx}

\n\\(\\implies\\) I = \\(x^2\\over 2\\)(\\(sin^{-1}x\\)) + \\(1\\over 2\\) {\\(\\int\\)[\\(\\sqrt{1-x^2}\\) dx – \\(1\\over \\sqrt{1-x^2}\\) dx}

\nI = \\(x^2\\over 2\\)(\\(sin^{-1}x\\)) + \\(1\\over 2\\) {\\({1\\over 2}x\\)[\\(\\sqrt{1-x^2}\\) dx + \\(1\\over 2\\) \\(\\sin^{-1}x\\) – \\(sin^{-1}x\\)] + C

\n\\(\\implies\\) I = \\(x^2\\over 2\\)(\\(sin^{-1}x\\)) + \\(1\\over 4\\)\\(x \\sqrt{1-x^2}\\) dx – \\(1\\over 4\\) \\(\\sin^{-1}x\\) + C

\n<\/p>\n\n\n

Hope you learnt what is the formula for integration by parts, learn more concepts of Indefinite Integration and practice more questions to get ahead in the competition. Good luck!<\/p>\n\n\n

\n
Next – Integration of Trigonometric Function<\/a><\/div>\n<\/div>\n\n\n\n
\n
Previous – Integration Formulas for Class 12 \u2013 Indefinite Integration<\/a><\/div>\n<\/div>\n","protected":false},"excerpt":{"rendered":"

Formula for Integration by Parts If u and v are two functions of x, then the formula for integration by parts is – \\(\\int\\) u.v dx = u \\(\\int\\) v dx – \\(\\int\\)[\\(du\\over dx\\).\\(\\int\\)v dx]dx i.e The integral of the product of two functions = (first function) \\(\\times\\) (Integral of Second function) – Integral of …<\/p>\n

What is the Formula for Integration by Parts ?<\/span> Read More »<\/a><\/p>\n","protected":false},"author":1,"featured_media":0,"comment_status":"open","ping_status":"closed","sticky":false,"template":"","format":"standard","meta":{"site-sidebar-layout":"default","site-content-layout":"default","ast-global-header-display":"","ast-main-header-display":"","ast-hfb-above-header-display":"","ast-hfb-below-header-display":"","ast-hfb-mobile-header-display":"","site-post-title":"","ast-breadcrumbs-content":"","ast-featured-img":"","footer-sml-layout":"","theme-transparent-header-meta":"default","adv-header-id-meta":"","stick-header-meta":"","header-above-stick-meta":"","header-main-stick-meta":"","header-below-stick-meta":""},"categories":[30],"tags":[442,204,439,443,440,441],"yoast_head":"\nWhat is the Formula for Integration by Parts ? - Mathemerize<\/title>\n<meta name=\"description\" content=\"Learn what is the formula for integration by parts and how to evaluate integrals by using integration by parts formula here.\" \/>\n<meta name=\"robots\" content=\"index, follow, max-snippet:-1, max-image-preview:large, max-video-preview:-1\" \/>\n<link rel=\"canonical\" href=\"https:\/\/mathemerize.com\/formula-for-integration-by-parts\/\" \/>\n<meta property=\"og:locale\" content=\"en_US\" \/>\n<meta property=\"og:type\" content=\"article\" \/>\n<meta property=\"og:title\" content=\"What is the Formula for Integration by Parts ? - Mathemerize\" \/>\n<meta property=\"og:description\" content=\"Learn what is the formula for integration by parts and how to evaluate integrals by using integration by parts formula here.\" \/>\n<meta property=\"og:url\" content=\"https:\/\/mathemerize.com\/formula-for-integration-by-parts\/\" \/>\n<meta property=\"og:site_name\" content=\"Mathemerize\" \/>\n<meta property=\"article:published_time\" content=\"2021-07-18T12:52:40+00:00\" \/>\n<meta property=\"article:modified_time\" content=\"2021-11-25T20:05:59+00:00\" \/>\n<meta name=\"author\" content=\"mathemerize\" \/>\n<meta name=\"twitter:card\" content=\"summary_large_image\" \/>\n<meta name=\"twitter:label1\" content=\"Written by\" \/>\n\t<meta name=\"twitter:data1\" content=\"mathemerize\" \/>\n\t<meta name=\"twitter:label2\" content=\"Est. reading time\" \/>\n\t<meta name=\"twitter:data2\" content=\"2 minutes\" \/>\n<script type=\"application\/ld+json\" class=\"yoast-schema-graph\">{\"@context\":\"https:\/\/schema.org\",\"@graph\":[{\"@type\":\"Article\",\"@id\":\"https:\/\/mathemerize.com\/formula-for-integration-by-parts\/#article\",\"isPartOf\":{\"@id\":\"https:\/\/mathemerize.com\/formula-for-integration-by-parts\/\"},\"author\":{\"name\":\"mathemerize\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df\"},\"headline\":\"What is the Formula for Integration by Parts ?\",\"datePublished\":\"2021-07-18T12:52:40+00:00\",\"dateModified\":\"2021-11-25T20:05:59+00:00\",\"mainEntityOfPage\":{\"@id\":\"https:\/\/mathemerize.com\/formula-for-integration-by-parts\/\"},\"wordCount\":444,\"commentCount\":0,\"publisher\":{\"@id\":\"https:\/\/mathemerize.com\/#organization\"},\"keywords\":[\"formula for integration by parts\",\"integration\",\"integration by parts\",\"integration by parts examples\",\"integration by parts formula\",\"liate integration by parts\"],\"articleSection\":[\"Indefinite Integration\"],\"inLanguage\":\"en-US\",\"potentialAction\":[{\"@type\":\"CommentAction\",\"name\":\"Comment\",\"target\":[\"https:\/\/mathemerize.com\/formula-for-integration-by-parts\/#respond\"]}]},{\"@type\":\"WebPage\",\"@id\":\"https:\/\/mathemerize.com\/formula-for-integration-by-parts\/\",\"url\":\"https:\/\/mathemerize.com\/formula-for-integration-by-parts\/\",\"name\":\"What is the Formula for Integration by Parts ? - Mathemerize\",\"isPartOf\":{\"@id\":\"https:\/\/mathemerize.com\/#website\"},\"datePublished\":\"2021-07-18T12:52:40+00:00\",\"dateModified\":\"2021-11-25T20:05:59+00:00\",\"description\":\"Learn what is the formula for integration by parts and how to evaluate integrals by using integration by parts formula here.\",\"breadcrumb\":{\"@id\":\"https:\/\/mathemerize.com\/formula-for-integration-by-parts\/#breadcrumb\"},\"inLanguage\":\"en-US\",\"potentialAction\":[{\"@type\":\"ReadAction\",\"target\":[\"https:\/\/mathemerize.com\/formula-for-integration-by-parts\/\"]}]},{\"@type\":\"BreadcrumbList\",\"@id\":\"https:\/\/mathemerize.com\/formula-for-integration-by-parts\/#breadcrumb\",\"itemListElement\":[{\"@type\":\"ListItem\",\"position\":1,\"name\":\"Home\",\"item\":\"https:\/\/mathemerize.com\/\"},{\"@type\":\"ListItem\",\"position\":2,\"name\":\"What is the Formula for Integration by Parts ?\"}]},{\"@type\":\"WebSite\",\"@id\":\"https:\/\/mathemerize.com\/#website\",\"url\":\"https:\/\/mathemerize.com\/\",\"name\":\"Mathemerize\",\"description\":\"Maths Tutorials - Study Math Online\",\"publisher\":{\"@id\":\"https:\/\/mathemerize.com\/#organization\"},\"potentialAction\":[{\"@type\":\"SearchAction\",\"target\":{\"@type\":\"EntryPoint\",\"urlTemplate\":\"https:\/\/mathemerize.com\/?s={search_term_string}\"},\"query-input\":\"required name=search_term_string\"}],\"inLanguage\":\"en-US\"},{\"@type\":\"Organization\",\"@id\":\"https:\/\/mathemerize.com\/#organization\",\"name\":\"Mathemerize\",\"url\":\"https:\/\/mathemerize.com\/\",\"logo\":{\"@type\":\"ImageObject\",\"inLanguage\":\"en-US\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/\",\"url\":\"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1\",\"contentUrl\":\"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1\",\"width\":140,\"height\":96,\"caption\":\"Mathemerize\"},\"image\":{\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/\"},\"sameAs\":[\"https:\/\/www.instagram.com\/mathemerize\/\"]},{\"@type\":\"Person\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df\",\"name\":\"mathemerize\",\"image\":{\"@type\":\"ImageObject\",\"inLanguage\":\"en-US\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/person\/image\/\",\"url\":\"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g\",\"contentUrl\":\"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g\",\"caption\":\"mathemerize\"},\"sameAs\":[\"https:\/\/mathemerize.com\"],\"url\":\"https:\/\/mathemerize.com\/author\/mathemerize\/\"}]}<\/script>\n<!-- \/ Yoast SEO plugin. -->","yoast_head_json":{"title":"What is the Formula for Integration by Parts ? - Mathemerize","description":"Learn what is the formula for integration by parts and how to evaluate integrals by using integration by parts formula here.","robots":{"index":"index","follow":"follow","max-snippet":"max-snippet:-1","max-image-preview":"max-image-preview:large","max-video-preview":"max-video-preview:-1"},"canonical":"https:\/\/mathemerize.com\/formula-for-integration-by-parts\/","og_locale":"en_US","og_type":"article","og_title":"What is the Formula for Integration by Parts ? - Mathemerize","og_description":"Learn what is the formula for integration by parts and how to evaluate integrals by using integration by parts formula here.","og_url":"https:\/\/mathemerize.com\/formula-for-integration-by-parts\/","og_site_name":"Mathemerize","article_published_time":"2021-07-18T12:52:40+00:00","article_modified_time":"2021-11-25T20:05:59+00:00","author":"mathemerize","twitter_card":"summary_large_image","twitter_misc":{"Written by":"mathemerize","Est. reading time":"2 minutes"},"schema":{"@context":"https:\/\/schema.org","@graph":[{"@type":"Article","@id":"https:\/\/mathemerize.com\/formula-for-integration-by-parts\/#article","isPartOf":{"@id":"https:\/\/mathemerize.com\/formula-for-integration-by-parts\/"},"author":{"name":"mathemerize","@id":"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df"},"headline":"What is the Formula for Integration by Parts ?","datePublished":"2021-07-18T12:52:40+00:00","dateModified":"2021-11-25T20:05:59+00:00","mainEntityOfPage":{"@id":"https:\/\/mathemerize.com\/formula-for-integration-by-parts\/"},"wordCount":444,"commentCount":0,"publisher":{"@id":"https:\/\/mathemerize.com\/#organization"},"keywords":["formula for integration by parts","integration","integration by parts","integration by parts examples","integration by parts formula","liate integration by parts"],"articleSection":["Indefinite Integration"],"inLanguage":"en-US","potentialAction":[{"@type":"CommentAction","name":"Comment","target":["https:\/\/mathemerize.com\/formula-for-integration-by-parts\/#respond"]}]},{"@type":"WebPage","@id":"https:\/\/mathemerize.com\/formula-for-integration-by-parts\/","url":"https:\/\/mathemerize.com\/formula-for-integration-by-parts\/","name":"What is the Formula for Integration by Parts ? - Mathemerize","isPartOf":{"@id":"https:\/\/mathemerize.com\/#website"},"datePublished":"2021-07-18T12:52:40+00:00","dateModified":"2021-11-25T20:05:59+00:00","description":"Learn what is the formula for integration by parts and how to evaluate integrals by using integration by parts formula here.","breadcrumb":{"@id":"https:\/\/mathemerize.com\/formula-for-integration-by-parts\/#breadcrumb"},"inLanguage":"en-US","potentialAction":[{"@type":"ReadAction","target":["https:\/\/mathemerize.com\/formula-for-integration-by-parts\/"]}]},{"@type":"BreadcrumbList","@id":"https:\/\/mathemerize.com\/formula-for-integration-by-parts\/#breadcrumb","itemListElement":[{"@type":"ListItem","position":1,"name":"Home","item":"https:\/\/mathemerize.com\/"},{"@type":"ListItem","position":2,"name":"What is the Formula for Integration by Parts ?"}]},{"@type":"WebSite","@id":"https:\/\/mathemerize.com\/#website","url":"https:\/\/mathemerize.com\/","name":"Mathemerize","description":"Maths Tutorials - Study Math Online","publisher":{"@id":"https:\/\/mathemerize.com\/#organization"},"potentialAction":[{"@type":"SearchAction","target":{"@type":"EntryPoint","urlTemplate":"https:\/\/mathemerize.com\/?s={search_term_string}"},"query-input":"required name=search_term_string"}],"inLanguage":"en-US"},{"@type":"Organization","@id":"https:\/\/mathemerize.com\/#organization","name":"Mathemerize","url":"https:\/\/mathemerize.com\/","logo":{"@type":"ImageObject","inLanguage":"en-US","@id":"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/","url":"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1","contentUrl":"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1","width":140,"height":96,"caption":"Mathemerize"},"image":{"@id":"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/"},"sameAs":["https:\/\/www.instagram.com\/mathemerize\/"]},{"@type":"Person","@id":"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df","name":"mathemerize","image":{"@type":"ImageObject","inLanguage":"en-US","@id":"https:\/\/mathemerize.com\/#\/schema\/person\/image\/","url":"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g","contentUrl":"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g","caption":"mathemerize"},"sameAs":["https:\/\/mathemerize.com"],"url":"https:\/\/mathemerize.com\/author\/mathemerize\/"}]}},"jetpack_featured_media_url":"","_links":{"self":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts\/3096"}],"collection":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/users\/1"}],"replies":[{"embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/comments?post=3096"}],"version-history":[{"count":24,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts\/3096\/revisions"}],"predecessor-version":[{"id":8658,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts\/3096\/revisions\/8658"}],"wp:attachment":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/media?parent=3096"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/categories?post=3096"},{"taxonomy":"post_tag","embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/tags?post=3096"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}