{"id":3743,"date":"2021-08-08T06:37:02","date_gmt":"2021-08-08T06:37:02","guid":{"rendered":"https:\/\/mathemerize.com\/?p=3743"},"modified":"2021-11-30T19:35:03","modified_gmt":"2021-11-30T14:05:03","slug":"formula-and-graph-of-trigonometric-functions","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/formula-and-graph-of-trigonometric-functions\/","title":{"rendered":"Graph of Trigonometric Functions – Domain & Range"},"content":{"rendered":"

Here, you will learn graph of trigonometric functions and domain & range of trigonometric functions.<\/p>\n

Graph of Trigonometric Functions :<\/h2>\n\n\n
\n
\n \n

y = sinx<\/b><\/p>\n <\/div>\n

\n \n

y = cosx<\/b><\/p>\n <\/div>\n <\/div>
\n\n

\n
\n \n

y = tanx<\/b><\/p>\n <\/div>\n

\n \n

y = cotx<\/b><\/p>\n <\/div>\n <\/div>
\n\n

\n
\n \n

y = secx<\/b><\/p>\n <\/div>\n

\n \n

y = cosecx<\/b><\/p>\n <\/div>\n <\/div>
\n\n\n

Values of T-Ratio of some standard angles<\/h2>\n\n\n

\n <\/p>\n \n \n \n \n \n \n \n
Angles
T-Ratio<\/td>\n
0<\/td>\n \\(\\pi\\over 6\\)<\/td>\n \\(\\pi\\over 4\\)<\/td>\n \\(\\pi\\over 3\\)<\/td>\n \\(\\pi\\over 2\\)<\/td>\n \\(\\pi\\)<\/td>\n <\/tr>\n
\\(sin\\theta\\)<\/td>\n 0<\/td>\n \\(1\\over 2\\)<\/td>\n \\(1\\over \\sqrt{2}\\)<\/td>\n \\(\\sqrt{3}\\over 2\\)<\/td>\n 1<\/td>\n 0<\/td>\n <\/tr>\n
\\(cos\\theta\\)<\/td>\n 1<\/td>\n \\(\\sqrt{3}\\over 2\\)<\/td>\n \\(1\\over \\sqrt{2}\\)<\/td>\n \\(1\\over 2\\)<\/td>\n 0<\/td>\n -1<\/td>\n <\/tr>\n
\\(tan\\theta\\)<\/td>\n 0<\/td>\n \\(1\\over \\sqrt{3}\\)<\/td>\n 1<\/td>\n \\(\\sqrt{3}\\)<\/td>\n N.D<\/td>\n 0<\/td>\n <\/tr>\n
\\(cot\\theta\\)<\/td>\n N.D<\/td>\n \\(\\sqrt{3}\\)<\/td>\n 1<\/td>\n \\(1\\over \\sqrt{3}\\)<\/td>\n 0<\/td>\n N.D<\/td>\n <\/tr>\n
\\(sec\\theta\\)<\/td>\n 1<\/td>\n \\(2\\over \\sqrt{3}\\)<\/td>\n \\(\\sqrt{2}\\)<\/td>\n 2<\/td>\n N.D<\/td>\n -1<\/td>\n <\/tr>\n
\\(cosec\\theta\\)<\/td>\n N.D<\/td>\n 2<\/td>\n \\(\\sqrt{2}\\)<\/td>\n \\(2\\over \\sqrt{3}\\)<\/td>\n 1<\/td>\n N.D<\/td>\n <\/tr>\n <\/tbody><\/table>
N.D = Not defined

<\/p>\n\n\n

Domain, Ranges and Periodicity of Trigonometric function<\/h2>\n\n\n\n \n \n \n \n \n \n \n
T-Ratio<\/td>\n Domain<\/td>\n Range<\/td>\n Period<\/td>\n <\/tr>\n
sin x<\/td>\n R<\/td>\n [-1, 1]<\/td>\n \\(2\\pi\\)<\/td>\n <\/tr>\n
cos x<\/td>\n R<\/td>\n [-1, 1]<\/td>\n \\(2\\pi\\)<\/td>\n <\/tr>\n
tan x<\/td>\n R – {(2n+1)\\(\\pi\/2\\); n \\(\\in\\) I}<\/td>\n R<\/td>\n \\(\\pi\\)<\/td>\n <\/tr>\n
cot x<\/td>\n R – {n\\(\\pi\\) : n \\(\\in\\) I}<\/td>\n R<\/td>\n \\(\\pi\\)<\/td>\n <\/tr>\n
sec x<\/td>\n R – {(2n+1)\\(\\pi\/2\\); n \\(\\in\\) I}<\/td>\n (-\\(\\infty\\), -1] \\(\\cup\\) [1, \\(\\infty\\)]<\/td>\n \\(2\\pi\\)<\/td>\n <\/tr>\n
cosec x<\/td>\n R – {n\\(\\pi\\) : n \\(\\in\\) I}<\/td>\n (-\\(\\infty\\), -1] \\(\\cup\\) [1, \\(\\infty\\)]<\/td>\n \\(2\\pi\\)<\/td>\n <\/tr>\n <\/tbody><\/table>
\n\n\n

Trigonometric ratios of some standard angles :<\/h2>\n

(i)  sin\\(18^{\\circ}\\) = sin\\(\\pi\\over 10\\) = \\(\\sqrt{5}-1\\over 4\\) = cos\\(72^{\\circ}\\) = cos\\(2\\pi\\over 5\\)<\/p>\n

(ii)  cos\\(36^{\\circ}\\) = cos\\(\\pi\\over 5\\) = \\(\\sqrt{5}+1\\over 4\\) = sin\\(54^{\\circ}\\) = sin\\(3\\pi\\over 10\\)<\/p>\n

(iii)  sin\\(72^{\\circ}\\) = sin\\(2\\pi\\over 5\\) = \\(\\sqrt{10 + 2\\sqrt{5}}\\over 4\\) = cos\\(18^{\\circ}\\) = cos\\(\\pi\\over 10\\)<\/p>\n

(iv)  sin\\(36^{\\circ}\\) = sin\\(\\pi\\over 5\\) = \\(\\sqrt{10 – 2\\sqrt{5}}\\over 4\\) = cos\\(54^{\\circ}\\) = cos\\(3\\pi\\over 10\\)<\/p>\n

(v)  sin\\(15^{\\circ}\\) = sin\\(\\pi\\over 12\\) = \\(\\sqrt{3}-1\\over {2\\sqrt{2}}\\) = cos\\(75^{\\circ}\\) = cos\\(5\\pi\\over 12\\)<\/p>\n

(vi)  cos\\(15^{\\circ}\\) = sin\\(\\pi\\over 12\\) = \\(\\sqrt{3}+1\\over {2\\sqrt{2}}\\) = sin\\(75^{\\circ}\\) = sin\\(5\\pi\\over 12\\)<\/p>\n

(vii)  tan\\(15^{\\circ}\\) = tan\\(\\pi\\over 12\\) = \\(2 – \\sqrt{3}\\) = \\(\\sqrt{3}-1\\over {\\sqrt{3}+1}\\) = cot\\(75^{\\circ}\\) = cot\\(5\\pi\\over 12\\)<\/p>\n

(viii)  tan\\(75^{\\circ}\\) = tan\\(5\\pi\\over 12\\) = \\(2 + \\sqrt{3}\\) = \\(\\sqrt{3}+1\\over {\\sqrt{3}-1}\\) = cot\\(15^{\\circ}\\) = cot\\(\\pi\\over 12\\)<\/p>\n

(ix)  tan(\\(22.5^{\\circ}\\)) = tan\\(\\pi\\over 8\\) = \\(\\sqrt{2}-1\\) = cot(\\(67.5^{\\circ}\\)) = cot\\(3\\pi\\over 8\\)<\/p>\n

(x)  tan(\\(67.5^{\\circ}\\)) = tan\\(3\\pi\\over 8\\) = \\(\\sqrt{2}+1\\) = cot(\\(22.5^{\\circ}\\)) = cot\\(\\pi\\over 8\\)<\/p>\n\n\n

Example : <\/span> Evaluate sin\\(78^{\\circ}\\) – sin\\(66^{\\circ}\\) – sin\\(42^{\\circ}\\) + sin\\(6^{\\circ}\\)<\/p>\n

Solution : <\/span>(sin\\(78^{\\circ}\\) – sin\\(66^{\\circ}\\)) – (sin\\(42^{\\circ}\\) – sin\\(6^{\\circ}\\)-)

\n = 2cos(\\(60^{\\circ}\\))sin(\\(18^{\\circ}\\)) – 2cos(\\(36^{\\circ}\\))sin(\\(30^{\\circ}\\))

\n = sin\\(18^{\\circ}\\) – cos\\(36^{\\circ}\\)

\n = (\\(\\sqrt{5}-1\\over 4\\)) – (\\(\\sqrt{5}+1\\over 4\\)) = \\(-1\\over 2\\)

<\/p>\n\n\n\n

\n
Next – Conditional Trigonometric Identities \u2013 Maximum & Minimum Value<\/a><\/div>\n<\/div>\n\n\n\n
\n
Previous – Trigonometric Identities for Class 10th \u2013 Formulas <\/a><\/div>\n<\/div>\n","protected":false},"excerpt":{"rendered":"

Here, you will learn graph of trigonometric functions and domain & range of trigonometric functions. Graph of Trigonometric Functions : y = sinx y = cosx y = tanx y = cotx y = secx y = cosecx Values of T-Ratio of some standard angles AnglesT-Ratio 0 \\(\\pi\\over 6\\) \\(\\pi\\over 4\\) \\(\\pi\\over 3\\) \\(\\pi\\over 2\\) …<\/p>\n

Graph of Trigonometric Functions – Domain & Range<\/span> Read More »<\/a><\/p>\n","protected":false},"author":1,"featured_media":0,"comment_status":"open","ping_status":"closed","sticky":false,"template":"","format":"standard","meta":{"site-sidebar-layout":"default","site-content-layout":"default","ast-global-header-display":"","ast-main-header-display":"","ast-hfb-above-header-display":"","ast-hfb-below-header-display":"","ast-hfb-mobile-header-display":"","site-post-title":"","ast-breadcrumbs-content":"","ast-featured-img":"","footer-sml-layout":"","theme-transparent-header-meta":"default","adv-header-id-meta":"","stick-header-meta":"","header-above-stick-meta":"","header-main-stick-meta":"","header-below-stick-meta":""},"categories":[28],"tags":[688,686],"yoast_head":"\nGraph of Trigonometric Functions - Domain & Range<\/title>\n<meta name=\"description\" content=\"In this post, you will learn graph of trigonometric functions, trigonometric ratios of angles and domain & range of trigonometric functions.\" \/>\n<meta name=\"robots\" content=\"index, follow, max-snippet:-1, max-image-preview:large, max-video-preview:-1\" \/>\n<link rel=\"canonical\" href=\"https:\/\/mathemerize.com\/formula-and-graph-of-trigonometric-functions\/\" \/>\n<meta property=\"og:locale\" content=\"en_US\" \/>\n<meta property=\"og:type\" content=\"article\" \/>\n<meta property=\"og:title\" content=\"Graph of Trigonometric Functions - Domain & Range\" \/>\n<meta property=\"og:description\" content=\"In this post, you will learn graph of trigonometric functions, trigonometric ratios of angles and domain & range of trigonometric functions.\" \/>\n<meta property=\"og:url\" content=\"https:\/\/mathemerize.com\/formula-and-graph-of-trigonometric-functions\/\" \/>\n<meta property=\"og:site_name\" content=\"Mathemerize\" \/>\n<meta property=\"article:published_time\" content=\"2021-08-08T06:37:02+00:00\" \/>\n<meta property=\"article:modified_time\" content=\"2021-11-30T14:05:03+00:00\" \/>\n<meta property=\"og:image\" content=\"https:\/\/mathemerize.com\/wp-content\/uploads\/2021\/08\/sinx.png\" \/>\n<meta name=\"author\" content=\"mathemerize\" \/>\n<meta name=\"twitter:card\" content=\"summary_large_image\" \/>\n<meta name=\"twitter:label1\" content=\"Written by\" \/>\n\t<meta name=\"twitter:data1\" content=\"mathemerize\" \/>\n\t<meta name=\"twitter:label2\" content=\"Est. reading time\" \/>\n\t<meta name=\"twitter:data2\" content=\"3 minutes\" \/>\n<script type=\"application\/ld+json\" class=\"yoast-schema-graph\">{\"@context\":\"https:\/\/schema.org\",\"@graph\":[{\"@type\":\"Article\",\"@id\":\"https:\/\/mathemerize.com\/formula-and-graph-of-trigonometric-functions\/#article\",\"isPartOf\":{\"@id\":\"https:\/\/mathemerize.com\/formula-and-graph-of-trigonometric-functions\/\"},\"author\":{\"name\":\"mathemerize\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df\"},\"headline\":\"Graph of Trigonometric Functions – Domain & Range\",\"datePublished\":\"2021-08-08T06:37:02+00:00\",\"dateModified\":\"2021-11-30T14:05:03+00:00\",\"mainEntityOfPage\":{\"@id\":\"https:\/\/mathemerize.com\/formula-and-graph-of-trigonometric-functions\/\"},\"wordCount\":403,\"commentCount\":0,\"publisher\":{\"@id\":\"https:\/\/mathemerize.com\/#organization\"},\"keywords\":[\"domain range and periodicity of trigonometric functions\",\"graph of trigonometric functions\"],\"articleSection\":[\"Trigonometry\"],\"inLanguage\":\"en-US\",\"potentialAction\":[{\"@type\":\"CommentAction\",\"name\":\"Comment\",\"target\":[\"https:\/\/mathemerize.com\/formula-and-graph-of-trigonometric-functions\/#respond\"]}]},{\"@type\":\"WebPage\",\"@id\":\"https:\/\/mathemerize.com\/formula-and-graph-of-trigonometric-functions\/\",\"url\":\"https:\/\/mathemerize.com\/formula-and-graph-of-trigonometric-functions\/\",\"name\":\"Graph of Trigonometric Functions - Domain & Range\",\"isPartOf\":{\"@id\":\"https:\/\/mathemerize.com\/#website\"},\"datePublished\":\"2021-08-08T06:37:02+00:00\",\"dateModified\":\"2021-11-30T14:05:03+00:00\",\"description\":\"In this post, you will learn graph of trigonometric functions, trigonometric ratios of angles and domain & range of trigonometric functions.\",\"breadcrumb\":{\"@id\":\"https:\/\/mathemerize.com\/formula-and-graph-of-trigonometric-functions\/#breadcrumb\"},\"inLanguage\":\"en-US\",\"potentialAction\":[{\"@type\":\"ReadAction\",\"target\":[\"https:\/\/mathemerize.com\/formula-and-graph-of-trigonometric-functions\/\"]}]},{\"@type\":\"BreadcrumbList\",\"@id\":\"https:\/\/mathemerize.com\/formula-and-graph-of-trigonometric-functions\/#breadcrumb\",\"itemListElement\":[{\"@type\":\"ListItem\",\"position\":1,\"name\":\"Home\",\"item\":\"https:\/\/mathemerize.com\/\"},{\"@type\":\"ListItem\",\"position\":2,\"name\":\"Graph of Trigonometric Functions – Domain & Range\"}]},{\"@type\":\"WebSite\",\"@id\":\"https:\/\/mathemerize.com\/#website\",\"url\":\"https:\/\/mathemerize.com\/\",\"name\":\"Mathemerize\",\"description\":\"Maths Tutorials - Study Math Online\",\"publisher\":{\"@id\":\"https:\/\/mathemerize.com\/#organization\"},\"potentialAction\":[{\"@type\":\"SearchAction\",\"target\":{\"@type\":\"EntryPoint\",\"urlTemplate\":\"https:\/\/mathemerize.com\/?s={search_term_string}\"},\"query-input\":\"required name=search_term_string\"}],\"inLanguage\":\"en-US\"},{\"@type\":\"Organization\",\"@id\":\"https:\/\/mathemerize.com\/#organization\",\"name\":\"Mathemerize\",\"url\":\"https:\/\/mathemerize.com\/\",\"logo\":{\"@type\":\"ImageObject\",\"inLanguage\":\"en-US\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/\",\"url\":\"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1\",\"contentUrl\":\"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1\",\"width\":140,\"height\":96,\"caption\":\"Mathemerize\"},\"image\":{\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/\"},\"sameAs\":[\"https:\/\/www.instagram.com\/mathemerize\/\"]},{\"@type\":\"Person\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df\",\"name\":\"mathemerize\",\"image\":{\"@type\":\"ImageObject\",\"inLanguage\":\"en-US\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/person\/image\/\",\"url\":\"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g\",\"contentUrl\":\"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g\",\"caption\":\"mathemerize\"},\"sameAs\":[\"https:\/\/mathemerize.com\"],\"url\":\"https:\/\/mathemerize.com\/author\/mathemerize\/\"}]}<\/script>\n<!-- \/ Yoast SEO plugin. -->","yoast_head_json":{"title":"Graph of Trigonometric Functions - Domain & Range","description":"In this post, you will learn graph of trigonometric functions, trigonometric ratios of angles and domain & range of trigonometric functions.","robots":{"index":"index","follow":"follow","max-snippet":"max-snippet:-1","max-image-preview":"max-image-preview:large","max-video-preview":"max-video-preview:-1"},"canonical":"https:\/\/mathemerize.com\/formula-and-graph-of-trigonometric-functions\/","og_locale":"en_US","og_type":"article","og_title":"Graph of Trigonometric Functions - Domain & Range","og_description":"In this post, you will learn graph of trigonometric functions, trigonometric ratios of angles and domain & range of trigonometric functions.","og_url":"https:\/\/mathemerize.com\/formula-and-graph-of-trigonometric-functions\/","og_site_name":"Mathemerize","article_published_time":"2021-08-08T06:37:02+00:00","article_modified_time":"2021-11-30T14:05:03+00:00","og_image":[{"url":"https:\/\/mathemerize.com\/wp-content\/uploads\/2021\/08\/sinx.png"}],"author":"mathemerize","twitter_card":"summary_large_image","twitter_misc":{"Written by":"mathemerize","Est. reading time":"3 minutes"},"schema":{"@context":"https:\/\/schema.org","@graph":[{"@type":"Article","@id":"https:\/\/mathemerize.com\/formula-and-graph-of-trigonometric-functions\/#article","isPartOf":{"@id":"https:\/\/mathemerize.com\/formula-and-graph-of-trigonometric-functions\/"},"author":{"name":"mathemerize","@id":"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df"},"headline":"Graph of Trigonometric Functions – Domain & Range","datePublished":"2021-08-08T06:37:02+00:00","dateModified":"2021-11-30T14:05:03+00:00","mainEntityOfPage":{"@id":"https:\/\/mathemerize.com\/formula-and-graph-of-trigonometric-functions\/"},"wordCount":403,"commentCount":0,"publisher":{"@id":"https:\/\/mathemerize.com\/#organization"},"keywords":["domain range and periodicity of trigonometric functions","graph of trigonometric functions"],"articleSection":["Trigonometry"],"inLanguage":"en-US","potentialAction":[{"@type":"CommentAction","name":"Comment","target":["https:\/\/mathemerize.com\/formula-and-graph-of-trigonometric-functions\/#respond"]}]},{"@type":"WebPage","@id":"https:\/\/mathemerize.com\/formula-and-graph-of-trigonometric-functions\/","url":"https:\/\/mathemerize.com\/formula-and-graph-of-trigonometric-functions\/","name":"Graph of Trigonometric Functions - Domain & Range","isPartOf":{"@id":"https:\/\/mathemerize.com\/#website"},"datePublished":"2021-08-08T06:37:02+00:00","dateModified":"2021-11-30T14:05:03+00:00","description":"In this post, you will learn graph of trigonometric functions, trigonometric ratios of angles and domain & range of trigonometric functions.","breadcrumb":{"@id":"https:\/\/mathemerize.com\/formula-and-graph-of-trigonometric-functions\/#breadcrumb"},"inLanguage":"en-US","potentialAction":[{"@type":"ReadAction","target":["https:\/\/mathemerize.com\/formula-and-graph-of-trigonometric-functions\/"]}]},{"@type":"BreadcrumbList","@id":"https:\/\/mathemerize.com\/formula-and-graph-of-trigonometric-functions\/#breadcrumb","itemListElement":[{"@type":"ListItem","position":1,"name":"Home","item":"https:\/\/mathemerize.com\/"},{"@type":"ListItem","position":2,"name":"Graph of Trigonometric Functions – Domain & Range"}]},{"@type":"WebSite","@id":"https:\/\/mathemerize.com\/#website","url":"https:\/\/mathemerize.com\/","name":"Mathemerize","description":"Maths Tutorials - Study Math Online","publisher":{"@id":"https:\/\/mathemerize.com\/#organization"},"potentialAction":[{"@type":"SearchAction","target":{"@type":"EntryPoint","urlTemplate":"https:\/\/mathemerize.com\/?s={search_term_string}"},"query-input":"required name=search_term_string"}],"inLanguage":"en-US"},{"@type":"Organization","@id":"https:\/\/mathemerize.com\/#organization","name":"Mathemerize","url":"https:\/\/mathemerize.com\/","logo":{"@type":"ImageObject","inLanguage":"en-US","@id":"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/","url":"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1","contentUrl":"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1","width":140,"height":96,"caption":"Mathemerize"},"image":{"@id":"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/"},"sameAs":["https:\/\/www.instagram.com\/mathemerize\/"]},{"@type":"Person","@id":"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df","name":"mathemerize","image":{"@type":"ImageObject","inLanguage":"en-US","@id":"https:\/\/mathemerize.com\/#\/schema\/person\/image\/","url":"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g","contentUrl":"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g","caption":"mathemerize"},"sameAs":["https:\/\/mathemerize.com"],"url":"https:\/\/mathemerize.com\/author\/mathemerize\/"}]}},"jetpack_featured_media_url":"","_links":{"self":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts\/3743"}],"collection":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/users\/1"}],"replies":[{"embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/comments?post=3743"}],"version-history":[{"count":20,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts\/3743\/revisions"}],"predecessor-version":[{"id":4284,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts\/3743\/revisions\/4284"}],"wp:attachment":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/media?parent=3743"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/categories?post=3743"},{"taxonomy":"post_tag","embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/tags?post=3743"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}