{"id":3829,"date":"2021-08-09T08:19:55","date_gmt":"2021-08-09T08:19:55","guid":{"rendered":"https:\/\/mathemerize.com\/?p=3829"},"modified":"2022-02-15T22:49:47","modified_gmt":"2022-02-15T17:19:47","slug":"different-types-of-parabola","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/different-types-of-parabola\/","title":{"rendered":"Different Types of Parabola Equations"},"content":{"rendered":"

Here, you will learn Different Types of Parabola and Standard equations of parabola, focal chord, double ordinate and latus rectum of parabola.<\/p>\n

Let’s begin –<\/p>\n

What is Parabola ?<\/h2>\n

A parabola is the locus of a point which moves in a plane, such that its distance from a fixed point(focus) is equal to its perpendicular distance from a fixed straight line(directrix).<\/p>\n

The Standard equation of parabola is \\(y^2 = 4ax\\) <\/strong>and it is shown in figure. For this parabola :<\/p>\n

(i) Vertex<\/strong> is (0,0).\"parabola\"<\/p>\n

(ii) focus<\/strong> is (a,0)<\/p>\n

(iii) Axis<\/strong> is y = 0<\/p>\n

(iv) Directrix<\/strong> is x + a = 0<\/p>\n

(a) Focal distance :<\/strong><\/p>\n

The distance of a point on the parabola from the focus is called the focal distance of the point.<\/p>\n

(b) Focal chord :<\/strong><\/p>\n

A chord of the parabola, which passes through the focus is called a focal chord.<\/p>\n

(c) Double ordinate :<\/strong><\/p>\n

A chord of the parabola perpendicular to the axis of the symmetry is called double ordinate.<\/p>\n

(d) Latus rectum :<\/strong><\/p>\n

A double ordinate passing through the focus or a focal chord perpendicular to the axis of parabola is called latus rectum.<\/p>\n

For \\(y^2 = 4ax\\).<\/p>\n

\n

Length of the latus rectum = 4a<\/p>\n

Length of the semi latus rectum = 2a<\/p>\n

Ends of the latus rectum are L(a, 2a) & L'(a, -2a).<\/p>\n<\/blockquote>\n

Note :<\/strong><\/p>\n

(i) Perpendicular distance from focus on the directrix = half the latus rectum.<\/em><\/p>\n

(ii) Vertex is middle point of the focus & point of intersection of directrix & axis.<\/em><\/p>\n

(iii) Two parabolas are said to be equal if they have the same latus rectum.<\/em><\/p>\n

Different Types of Parabola & Standard Equations of Parabola<\/h2>\n

Four different types of parabola equations are<\/p>\n

\n

\\(y^2\\) = 4ax ; \\(y^2\\) = -4ax ; \\(x^2\\) = 4ay ; \\(x^2\\) = -4ay.<\/p>\n<\/blockquote>\n

One I had shown above and three others are shown below.<\/p>\n\n\n

\n\t\t\t
\n\t\t\t \n\t\t\t

\\(y^2\\) = -4ax<\/b><\/p>\n\t\t\t <\/div>\n\t\t\t

\n\t\t\t \n\t\t\t

\\(x^2\\) = 4ay<\/b><\/p>\n\t\t\t <\/div>\n\t\t\t

\n\t\t\t \n\t\t\t

\\(x^2\\) = -4ay<\/b><\/p>\n\t\t\t <\/div>\n\t\t\t<\/div>
\n\n\n\n\n\t\t \n\t\t \n\t\t \n\t\t \n\t\t \n\t\t \n\t\t \n\t\t
Parabola<\/th>\n\t\t Vertex<\/th> \n\t\t Focus<\/th>\n\t\t Axis<\/th>\n\t\t Directrix<\/th>\n\t\t <\/tr>\n\t\t
\\(y^2\\) = 4ax<\/td>\n\t\t (0,0)<\/td> \n\t\t (a,0)<\/td>\n\t\t y = 0<\/td>\n\t\t x = -a<\/td>\n\t\t <\/tr>\n\t\t
\\(y^2\\) = -4ax<\/td>\n\t\t (0,0)<\/td> \n\t\t (-a,0)<\/td>\n\t\t y = 0<\/td>\n\t\t x = a<\/td>\n\t\t <\/tr>\n\t\t
\\(x^2\\) = +4ay<\/td>\n\t\t (0,0)<\/td> \n\t\t (0,a)<\/td>\n\t\t x = 0<\/td>\n\t\t y = -a<\/td>\n\t\t <\/tr>\n\t\t
\\(x^2\\) = -4ay<\/td>\n\t\t (0,0)<\/td> \n\t\t (0,-a)<\/td>\n\t\t x = 0<\/td>\n\t\t y = a<\/td>\n\t\t <\/tr>\n\t\t
\\((y-k)^2\\) = 4a(x-h)<\/td>\n\t\t (h,k)<\/td> \n\t\t (h+a,k)<\/td>\n\t\t y = k<\/td>\n\t\t x+a-h = 0<\/td>\n\t\t <\/tr>\n\t\t
\\((x-p)^2\\) = 4b(y-q)<\/td>\n\t\t (p,q)<\/td> \n\t\t (p,b+q)<\/td>\n\t\t x = p<\/td>\n\t\t y+b-q = 0<\/td>\n\t\t <\/tr>\n\t\t <\/tbody><\/table>
\n\n\t\t \n\t\t \n\t\t \n\t\t \n\t\t \n\t\t \n\t\t \n\t\t \n\t\t
Length of Latus rectum<\/th>\n\t\t Ends of Latus rectum<\/th>\n\t\t Parametric equation<\/th>\n\t\t Focal length<\/th>\n\t\t <\/tr>\n\t\t
4a<\/td>\n\t\t (a,\\(\\pm\\)2a)<\/td> \n\t\t (a\\(t^2\\), 2at)<\/td>\n\t\t x + a<\/td>\n\t\t <\/tr>\n\t\t
4a<\/td>\n\t\t (-a,\\(\\pm\\)2a)<\/td> \n\t\t (-a\\(t^2\\), 2at)<\/td>\n\t\t x – a<\/td>\n\t\t <\/tr>\n\t\t
4a<\/td>\n\t\t (\\(\\pm\\)2a,a)<\/td> \n\t\t (2at, a\\(t^2\\))<\/td>\n\t\t y + a<\/td>\n\t\t <\/tr>\n\t\t
4a<\/td>\n\t\t (\\(\\pm\\)2a,-a)<\/td> \n\t\t (2at, -a\\(t^2\\))<\/td>\n\t\t y – a<\/td>\n\t\t <\/tr>\n\t\t
4a<\/td>\n\t\t (h+a, k\\(\\pm\\)2a)<\/td> \n\t\t (h+a\\(t^2\\), k+2at)<\/td>\n\t\t x – h + a<\/td>\n\t\t <\/tr>\n\t\t
4b<\/td>\n\t\t (p\\(\\pm\\)2a, q+a)<\/td> \n\t\t (p+2at, q+a\\(t^2\\))<\/td>\n\t\t y – q + b<\/td>\n\t\t <\/tr>\n\t\t <\/tbody><\/table>\n\n\n\n

Example : <\/span> Find the vertex, axis, directrix, focus, latus rectum and the tangent at vertex for the parabola \\(9y^2 – 16x – 12y – 57\\) = 0.<\/p>\n

Solution : <\/span>The given equation can be written as \\(({y-2\\over 3})^2\\) = \n\t\t \\(16\\over 9\\)\\(({x + 61\\over 16})\\) which is of the form \\(y^2\\) = 4ax. Hence the vertex is (-\\(61\\over 16\\), \\(2\\over 3\\))

\n\t\t The axis is y – \\(2\\over 3\\) = 0 \\(\\implies\\) y = \\(2\\over 3\\)

\n\t\t The directrix is x + a – h = 0 \\(\\implies\\) x + \\(61\\over 16\\) + \\(4\\over 9\\) \\(\\implies\\) x = \\(-613\\over 144\\)

\n\t\t The focus is (h+a, k) \\(\\implies\\) (\\(-485\\over 144\\), \\(2\\over 3\\))

\n\t\t Length of the latus rectum = 4a = \\(16\\over 9\\)

\n\t\t The tangent at the vertex is x – h = 0 \\(\\implies\\) x = \\(-61\\over 16\\)

<\/p>\n\n\n

Position of a point relative to a parabola :<\/strong><\/p>\n

The point (\\(x_1\\),\\(y_1\\)) lies outside, on or inside the parabola \\(y^2\\) = 4a\\(x_1\\) is positive, zero or negative.<\/p>\n


\n

Related Questions<\/h3>\n

Find the value of k for which the point (k-1, k) lies inside the parabola \\(y^2\\) = 4x.<\/a><\/p>\n

The focal distance of a point on the parabola \\(y^2\\) = 12x is 4. Find the abscissa of this point.<\/a><\/p>\n

The slope of the line touching both the parabolas \\(y^2\\) = 4x and \\(x^2\\) = -32 is<\/a><\/p>\n\n\n

\n
Next – Equation of Tangent to Parabola in all Forms<\/a><\/div>\n<\/div>\n\n\n\n
\n
Previous – Graph of a Parabola \u2013 Types of Parabolas <\/a><\/div>\n<\/div>\n","protected":false},"excerpt":{"rendered":"

Here, you will learn Different Types of Parabola and Standard equations of parabola, focal chord, double ordinate and latus rectum of parabola. Let’s begin – What is Parabola ? A parabola is the locus of a point which moves in a plane, such that its distance from a fixed point(focus) is equal to its perpendicular …<\/p>\n

Different Types of Parabola Equations<\/span> Read More »<\/a><\/p>\n","protected":false},"author":1,"featured_media":0,"comment_status":"open","ping_status":"closed","sticky":false,"template":"","format":"standard","meta":{"site-sidebar-layout":"default","site-content-layout":"default","ast-global-header-display":"","ast-main-header-display":"","ast-hfb-above-header-display":"","ast-hfb-below-header-display":"","ast-hfb-mobile-header-display":"","site-post-title":"","ast-breadcrumbs-content":"","ast-featured-img":"","footer-sml-layout":"","theme-transparent-header-meta":"default","adv-header-id-meta":"","stick-header-meta":"","header-above-stick-meta":"","header-main-stick-meta":"","header-below-stick-meta":""},"categories":[12],"tags":[516,513,515,514,512],"yoast_head":"\nDifferent Types of Parabola Equations - Mathemerize<\/title>\n<meta name=\"description\" content=\"Learn Different Types of Parabola and Standard equations of parabola, focal chord, double ordinate and latus rectum of parabola here.\" \/>\n<meta name=\"robots\" content=\"index, follow, max-snippet:-1, max-image-preview:large, max-video-preview:-1\" \/>\n<link rel=\"canonical\" href=\"https:\/\/mathemerize.com\/different-types-of-parabola\/\" \/>\n<meta property=\"og:locale\" content=\"en_US\" \/>\n<meta property=\"og:type\" content=\"article\" \/>\n<meta property=\"og:title\" content=\"Different Types of Parabola Equations - Mathemerize\" \/>\n<meta property=\"og:description\" content=\"Learn Different Types of Parabola and Standard equations of parabola, focal chord, double ordinate and latus rectum of parabola here.\" \/>\n<meta property=\"og:url\" content=\"https:\/\/mathemerize.com\/different-types-of-parabola\/\" \/>\n<meta property=\"og:site_name\" content=\"Mathemerize\" \/>\n<meta property=\"article:published_time\" content=\"2021-08-09T08:19:55+00:00\" \/>\n<meta property=\"article:modified_time\" content=\"2022-02-15T17:19:47+00:00\" \/>\n<meta property=\"og:image\" content=\"https:\/\/mathemerize.com\/wp-content\/uploads\/2021\/08\/parabola.png\" \/>\n<meta name=\"author\" content=\"mathemerize\" \/>\n<meta name=\"twitter:card\" content=\"summary_large_image\" \/>\n<meta name=\"twitter:label1\" content=\"Written by\" \/>\n\t<meta name=\"twitter:data1\" content=\"mathemerize\" \/>\n\t<meta name=\"twitter:label2\" content=\"Est. reading time\" \/>\n\t<meta name=\"twitter:data2\" content=\"4 minutes\" \/>\n<script type=\"application\/ld+json\" class=\"yoast-schema-graph\">{\"@context\":\"https:\/\/schema.org\",\"@graph\":[{\"@type\":\"Article\",\"@id\":\"https:\/\/mathemerize.com\/different-types-of-parabola\/#article\",\"isPartOf\":{\"@id\":\"https:\/\/mathemerize.com\/different-types-of-parabola\/\"},\"author\":{\"name\":\"mathemerize\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df\"},\"headline\":\"Different Types of Parabola Equations\",\"datePublished\":\"2021-08-09T08:19:55+00:00\",\"dateModified\":\"2022-02-15T17:19:47+00:00\",\"mainEntityOfPage\":{\"@id\":\"https:\/\/mathemerize.com\/different-types-of-parabola\/\"},\"wordCount\":640,\"commentCount\":0,\"publisher\":{\"@id\":\"https:\/\/mathemerize.com\/#organization\"},\"keywords\":[\"different equations of parabola\",\"different types of parabola\",\"double ordinate of parabola\",\"latus rectum of parabola\",\"types of parabola\"],\"articleSection\":[\"Parabola\"],\"inLanguage\":\"en-US\",\"potentialAction\":[{\"@type\":\"CommentAction\",\"name\":\"Comment\",\"target\":[\"https:\/\/mathemerize.com\/different-types-of-parabola\/#respond\"]}]},{\"@type\":\"WebPage\",\"@id\":\"https:\/\/mathemerize.com\/different-types-of-parabola\/\",\"url\":\"https:\/\/mathemerize.com\/different-types-of-parabola\/\",\"name\":\"Different Types of Parabola Equations - Mathemerize\",\"isPartOf\":{\"@id\":\"https:\/\/mathemerize.com\/#website\"},\"datePublished\":\"2021-08-09T08:19:55+00:00\",\"dateModified\":\"2022-02-15T17:19:47+00:00\",\"description\":\"Learn Different Types of Parabola and Standard equations of parabola, focal chord, double ordinate and latus rectum of parabola here.\",\"breadcrumb\":{\"@id\":\"https:\/\/mathemerize.com\/different-types-of-parabola\/#breadcrumb\"},\"inLanguage\":\"en-US\",\"potentialAction\":[{\"@type\":\"ReadAction\",\"target\":[\"https:\/\/mathemerize.com\/different-types-of-parabola\/\"]}]},{\"@type\":\"BreadcrumbList\",\"@id\":\"https:\/\/mathemerize.com\/different-types-of-parabola\/#breadcrumb\",\"itemListElement\":[{\"@type\":\"ListItem\",\"position\":1,\"name\":\"Home\",\"item\":\"https:\/\/mathemerize.com\/\"},{\"@type\":\"ListItem\",\"position\":2,\"name\":\"Different Types of Parabola Equations\"}]},{\"@type\":\"WebSite\",\"@id\":\"https:\/\/mathemerize.com\/#website\",\"url\":\"https:\/\/mathemerize.com\/\",\"name\":\"Mathemerize\",\"description\":\"Maths Tutorials - Study Math Online\",\"publisher\":{\"@id\":\"https:\/\/mathemerize.com\/#organization\"},\"potentialAction\":[{\"@type\":\"SearchAction\",\"target\":{\"@type\":\"EntryPoint\",\"urlTemplate\":\"https:\/\/mathemerize.com\/?s={search_term_string}\"},\"query-input\":\"required name=search_term_string\"}],\"inLanguage\":\"en-US\"},{\"@type\":\"Organization\",\"@id\":\"https:\/\/mathemerize.com\/#organization\",\"name\":\"Mathemerize\",\"url\":\"https:\/\/mathemerize.com\/\",\"logo\":{\"@type\":\"ImageObject\",\"inLanguage\":\"en-US\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/\",\"url\":\"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1\",\"contentUrl\":\"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1\",\"width\":140,\"height\":96,\"caption\":\"Mathemerize\"},\"image\":{\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/\"},\"sameAs\":[\"https:\/\/www.instagram.com\/mathemerize\/\"]},{\"@type\":\"Person\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df\",\"name\":\"mathemerize\",\"image\":{\"@type\":\"ImageObject\",\"inLanguage\":\"en-US\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/person\/image\/\",\"url\":\"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g\",\"contentUrl\":\"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g\",\"caption\":\"mathemerize\"},\"sameAs\":[\"https:\/\/mathemerize.com\"],\"url\":\"https:\/\/mathemerize.com\/author\/mathemerize\/\"}]}<\/script>\n<!-- \/ Yoast SEO plugin. -->","yoast_head_json":{"title":"Different Types of Parabola Equations - Mathemerize","description":"Learn Different Types of Parabola and Standard equations of parabola, focal chord, double ordinate and latus rectum of parabola here.","robots":{"index":"index","follow":"follow","max-snippet":"max-snippet:-1","max-image-preview":"max-image-preview:large","max-video-preview":"max-video-preview:-1"},"canonical":"https:\/\/mathemerize.com\/different-types-of-parabola\/","og_locale":"en_US","og_type":"article","og_title":"Different Types of Parabola Equations - Mathemerize","og_description":"Learn Different Types of Parabola and Standard equations of parabola, focal chord, double ordinate and latus rectum of parabola here.","og_url":"https:\/\/mathemerize.com\/different-types-of-parabola\/","og_site_name":"Mathemerize","article_published_time":"2021-08-09T08:19:55+00:00","article_modified_time":"2022-02-15T17:19:47+00:00","og_image":[{"url":"https:\/\/mathemerize.com\/wp-content\/uploads\/2021\/08\/parabola.png"}],"author":"mathemerize","twitter_card":"summary_large_image","twitter_misc":{"Written by":"mathemerize","Est. reading time":"4 minutes"},"schema":{"@context":"https:\/\/schema.org","@graph":[{"@type":"Article","@id":"https:\/\/mathemerize.com\/different-types-of-parabola\/#article","isPartOf":{"@id":"https:\/\/mathemerize.com\/different-types-of-parabola\/"},"author":{"name":"mathemerize","@id":"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df"},"headline":"Different Types of Parabola Equations","datePublished":"2021-08-09T08:19:55+00:00","dateModified":"2022-02-15T17:19:47+00:00","mainEntityOfPage":{"@id":"https:\/\/mathemerize.com\/different-types-of-parabola\/"},"wordCount":640,"commentCount":0,"publisher":{"@id":"https:\/\/mathemerize.com\/#organization"},"keywords":["different equations of parabola","different types of parabola","double ordinate of parabola","latus rectum of parabola","types of parabola"],"articleSection":["Parabola"],"inLanguage":"en-US","potentialAction":[{"@type":"CommentAction","name":"Comment","target":["https:\/\/mathemerize.com\/different-types-of-parabola\/#respond"]}]},{"@type":"WebPage","@id":"https:\/\/mathemerize.com\/different-types-of-parabola\/","url":"https:\/\/mathemerize.com\/different-types-of-parabola\/","name":"Different Types of Parabola Equations - Mathemerize","isPartOf":{"@id":"https:\/\/mathemerize.com\/#website"},"datePublished":"2021-08-09T08:19:55+00:00","dateModified":"2022-02-15T17:19:47+00:00","description":"Learn Different Types of Parabola and Standard equations of parabola, focal chord, double ordinate and latus rectum of parabola here.","breadcrumb":{"@id":"https:\/\/mathemerize.com\/different-types-of-parabola\/#breadcrumb"},"inLanguage":"en-US","potentialAction":[{"@type":"ReadAction","target":["https:\/\/mathemerize.com\/different-types-of-parabola\/"]}]},{"@type":"BreadcrumbList","@id":"https:\/\/mathemerize.com\/different-types-of-parabola\/#breadcrumb","itemListElement":[{"@type":"ListItem","position":1,"name":"Home","item":"https:\/\/mathemerize.com\/"},{"@type":"ListItem","position":2,"name":"Different Types of Parabola Equations"}]},{"@type":"WebSite","@id":"https:\/\/mathemerize.com\/#website","url":"https:\/\/mathemerize.com\/","name":"Mathemerize","description":"Maths Tutorials - Study Math Online","publisher":{"@id":"https:\/\/mathemerize.com\/#organization"},"potentialAction":[{"@type":"SearchAction","target":{"@type":"EntryPoint","urlTemplate":"https:\/\/mathemerize.com\/?s={search_term_string}"},"query-input":"required name=search_term_string"}],"inLanguage":"en-US"},{"@type":"Organization","@id":"https:\/\/mathemerize.com\/#organization","name":"Mathemerize","url":"https:\/\/mathemerize.com\/","logo":{"@type":"ImageObject","inLanguage":"en-US","@id":"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/","url":"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1","contentUrl":"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1","width":140,"height":96,"caption":"Mathemerize"},"image":{"@id":"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/"},"sameAs":["https:\/\/www.instagram.com\/mathemerize\/"]},{"@type":"Person","@id":"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df","name":"mathemerize","image":{"@type":"ImageObject","inLanguage":"en-US","@id":"https:\/\/mathemerize.com\/#\/schema\/person\/image\/","url":"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g","contentUrl":"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g","caption":"mathemerize"},"sameAs":["https:\/\/mathemerize.com"],"url":"https:\/\/mathemerize.com\/author\/mathemerize\/"}]}},"jetpack_featured_media_url":"","_links":{"self":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts\/3829"}],"collection":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/users\/1"}],"replies":[{"embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/comments?post=3829"}],"version-history":[{"count":22,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts\/3829\/revisions"}],"predecessor-version":[{"id":10097,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts\/3829\/revisions\/10097"}],"wp:attachment":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/media?parent=3829"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/categories?post=3829"},{"taxonomy":"post_tag","embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/tags?post=3829"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}