{"id":3837,"date":"2021-08-09T08:52:58","date_gmt":"2021-08-09T08:52:58","guid":{"rendered":"https:\/\/mathemerize.com\/?p=3837"},"modified":"2021-11-21T16:42:03","modified_gmt":"2021-11-21T11:12:03","slug":"differentiability-of-a-function","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/differentiability-of-a-function\/","title":{"rendered":"Differentiability of a Function – Differentiable vs Continuous"},"content":{"rendered":"

Here, you will learn differentiability of a function and differentiability at a point and over an Interval.<\/p>\n

Let’s begin –<\/p>\n

Meaning of Derivative<\/strong><\/p>\n

The instantaneous rate of change of a function with respect to the dependent variable is called derivative. Let ‘f’ be a given function of one variable and let \\(\\Delta\\)x denote a number (positive or negative) to be added to the number x. Let \\(\\Delta\\)f denote the corresponding change of ‘f’ then \\(\\Delta\\)f = f(x + \\(\\Delta\\)x) – f(x).<\/p>\n

\\(\\implies\\) \\(\\Delta f\\over {\\Delta x}\\) = \\(f(x + \\Delta x) – f(x)\\over {\\Delta x}\\)<\/p>\n

If \\(\\Delta f\\over {\\Delta x}\\) approaches a limit as \\(\\Delta\\)x approaches zero, this limit is the derivative of ‘f’ at the point x. The derivative of a function ‘f’ is a function; this function is denoted by symbols such as<\/p>\n

\n

\\(f^{‘}(x)\\), \\(df\\over {dx}\\), \\(d\\over {dx}\\)f(x) or \\(df(x)\\over {dx}\\)<\/p>\n<\/blockquote>\n

\\(\\implies\\) \\(df\\over {dx}\\) = \\(\\displaystyle{\\lim_{\\Delta x \\to 0}}\\)\\(\\Delta f\\over {\\Delta x}\\) = \\(\\displaystyle{\\lim_{\\Delta x \\to 0}}\\) \\(f(x + \\Delta x) – f(x)\\over {\\Delta x}\\)<\/p>\n

The derivative evaluated at a point a, is written,<\/p>\n

\n

\\(f^{‘}(a)\\), \\({df(x)\\over {dx}}|_{x = a}\\), \\(f^{‘}(x)_{x = a}\\)<\/p>\n<\/blockquote>\n

Differentiable at x=a (Existence of Derivative at x = a)<\/h2>\n

(a) Right hand derivative<\/strong><\/p>\n

The right hand derivative of f(x) at x = a denoted by \\(f(a^+)\\) is defined as<\/p>\n

\n

\\(f^{‘}(a^+)\\) = \\(\\displaystyle{\\lim_{h \\to 0}}\\) \\(f(a + h) – f(a)\\over h\\), provided the limit exist and finite.(h > 0)<\/p>\n<\/blockquote>\n

(b) Left hand derivative<\/strong><\/p>\n

The left hand derivative of f(x) at x = a denoted by \\(f(a^-)\\) is defined as<\/p>\n

\n

\\(f^{‘}(a^-)\\) = \\(\\displaystyle{\\lim_{h \\to 0}}\\) \\(f(a – h) – f(a)\\over {-h}\\), provided the limit exist and finite.(h > 0)<\/p>\n<\/blockquote>\n

Hence f(x) is said to be derivable or differentiable at x = a. If \\(f(a^+)\\) = \\(f^{‘}(a^-)\\) = finite quantity and it is denoted by \\(f^{‘}(a)\\); where \\(f^{‘}(a)\\) = \\(f^{‘}(a^+)\\) = \\(f^{‘}(a^-)\\) & it is called derivative or differential coefficient of f(x) at x = a.<\/p>\n

Differentiability of a function – Differentiable vs Continuous<\/h2>\n

If a function f(x) is derivable or differentiable at x = a, then f(x) is continuous at x = a.<\/p>\n

Note :<\/strong><\/p>\n

(i) Differentiable \\(\\implies\\) Continuous; Continuity \\(\\not\\Rightarrow\\) Differentiable; Not Differential \\(\\not\\Rightarrow\\) Not Continuous But Not Continuous \\(\\implies\\) Not Differentiable<\/p>\n

(ii) All polynomial, trigonometric, logarithmic and exponential function are continuous and differentiable in their domains.<\/p>\n

(iii) If f(x) & g(x) are differentiable at x = a then the function f(x) + g(x), f(x) – g(x), f(x).g(x) will also be differentiable at x = a & g(a) \\(\\ne\\) 0 then the function \\(f(x)\\over {g(x)}\\) will also be differentiable at x = a.<\/p>\n\n\n

Example : <\/span>If f(x) = {[cos\\(\\pi\\)x], x \\(\\leq\\) 1 and 2{x} – 1, x > 1} comment on the derivability at x = 1, where [ ] denotes greatest integer function & { } denotes fractional part function.<\/p>\n

Solution : <\/span>For differentiability at x = 1, we determine, \\(f^{‘}(1^-)\\) and \\(f^{‘}(1^+)\\).

\\(f^{‘}(1^-)\\) = \\(\\displaystyle{\\lim_{h \\to 0}}\\) \\(f(1 – h) – f(1)\\over {-h}\\) = \\(\\displaystyle{\\lim_{h \\to 0}}\\)\\([cos(\\pi – \\pi h)] + 1\\over {-h}\\) = \\(\\displaystyle{\\lim_{h \\to 0}}\\) \\(-1 + 1\\over {-h}\\) = 0

\\(f^{‘}(1^+)\\) = \\(\\displaystyle{\\lim_{h \\to 0}}\\) \\(f(1 + h) – f(1)\\over h\\) = \\(\\displaystyle{\\lim_{h \\to 0}}\\)\\(2[1 + h] – 1 + 1\\over h\\) = \\(\\displaystyle{\\lim_{h \\to 0}}\\)\\(2h\\over h\\) = 2

Hence f(x) is not differentiable at x = 1.

<\/p>\n\n\n

Differentiability of a function over an Interval<\/h2>\n
\n

(a) f(x) is said to be differentiable over an open interval (a, b) if it is differentiable at each and every point of the open interval (a, b).<\/p>\n

(b) f(x) is said to be differentiable over the closed interval [a, b] if :<\/p>\n

(i) f(x) is differentiable in (a, b) &<\/p>\n

(ii) for the points a and b, \\(f^{‘}(a^+)\\) & \\(f^{‘}(b^-)\\) exist.<\/p>\n<\/blockquote>\n\n\n

\n
Next – Examples of Differentiability<\/a><\/div>\n<\/div>\n\n\n\n
<\/div>\n","protected":false},"excerpt":{"rendered":"

Here, you will learn differentiability of a function and differentiability at a point and over an Interval. Let’s begin – Meaning of Derivative The instantaneous rate of change of a function with respect to the dependent variable is called derivative. Let ‘f’ be a given function of one variable and let \\(\\Delta\\)x denote a number …<\/p>\n

Differentiability of a Function – Differentiable vs Continuous<\/span> Read More »<\/a><\/p>\n","protected":false},"author":1,"featured_media":0,"comment_status":"open","ping_status":"closed","sticky":false,"template":"","format":"standard","meta":{"site-sidebar-layout":"default","site-content-layout":"default","ast-global-header-display":"","ast-main-header-display":"","ast-hfb-above-header-display":"","ast-hfb-below-header-display":"","ast-hfb-mobile-header-display":"","site-post-title":"","ast-breadcrumbs-content":"","ast-featured-img":"","footer-sml-layout":"","theme-transparent-header-meta":"default","adv-header-id-meta":"","stick-header-meta":"","header-above-stick-meta":"","header-main-stick-meta":"","header-below-stick-meta":""},"categories":[21],"tags":[225,226,224],"yoast_head":"\nDifferentiability of a Function - Differentiable vs Continuous<\/title>\n<meta name=\"description\" content=\"In this post, you will learn differentiability of a function and differentiability at a point and differentiability over an Interval.\" \/>\n<meta name=\"robots\" content=\"index, follow, max-snippet:-1, max-image-preview:large, max-video-preview:-1\" \/>\n<link rel=\"canonical\" href=\"https:\/\/mathemerize.com\/differentiability-of-a-function\/\" \/>\n<meta property=\"og:locale\" content=\"en_US\" \/>\n<meta property=\"og:type\" content=\"article\" \/>\n<meta property=\"og:title\" content=\"Differentiability of a Function - Differentiable vs Continuous\" \/>\n<meta property=\"og:description\" content=\"In this post, you will learn differentiability of a function and differentiability at a point and differentiability over an Interval.\" \/>\n<meta property=\"og:url\" content=\"https:\/\/mathemerize.com\/differentiability-of-a-function\/\" \/>\n<meta property=\"og:site_name\" content=\"Mathemerize\" \/>\n<meta property=\"article:published_time\" content=\"2021-08-09T08:52:58+00:00\" \/>\n<meta property=\"article:modified_time\" content=\"2021-11-21T11:12:03+00:00\" \/>\n<meta name=\"author\" content=\"mathemerize\" \/>\n<meta name=\"twitter:card\" content=\"summary_large_image\" \/>\n<meta name=\"twitter:label1\" content=\"Written by\" \/>\n\t<meta name=\"twitter:data1\" content=\"mathemerize\" \/>\n\t<meta name=\"twitter:label2\" content=\"Est. reading time\" \/>\n\t<meta name=\"twitter:data2\" content=\"3 minutes\" \/>\n<script type=\"application\/ld+json\" class=\"yoast-schema-graph\">{\"@context\":\"https:\/\/schema.org\",\"@graph\":[{\"@type\":\"Article\",\"@id\":\"https:\/\/mathemerize.com\/differentiability-of-a-function\/#article\",\"isPartOf\":{\"@id\":\"https:\/\/mathemerize.com\/differentiability-of-a-function\/\"},\"author\":{\"name\":\"mathemerize\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df\"},\"headline\":\"Differentiability of a Function – Differentiable vs Continuous\",\"datePublished\":\"2021-08-09T08:52:58+00:00\",\"dateModified\":\"2021-11-21T11:12:03+00:00\",\"mainEntityOfPage\":{\"@id\":\"https:\/\/mathemerize.com\/differentiability-of-a-function\/\"},\"wordCount\":684,\"commentCount\":0,\"publisher\":{\"@id\":\"https:\/\/mathemerize.com\/#organization\"},\"keywords\":[\"differentiability\",\"differentiability at a point\",\"Differentiability of a Function\"],\"articleSection\":[\"Differentiability\"],\"inLanguage\":\"en-US\",\"potentialAction\":[{\"@type\":\"CommentAction\",\"name\":\"Comment\",\"target\":[\"https:\/\/mathemerize.com\/differentiability-of-a-function\/#respond\"]}]},{\"@type\":\"WebPage\",\"@id\":\"https:\/\/mathemerize.com\/differentiability-of-a-function\/\",\"url\":\"https:\/\/mathemerize.com\/differentiability-of-a-function\/\",\"name\":\"Differentiability of a Function - Differentiable vs Continuous\",\"isPartOf\":{\"@id\":\"https:\/\/mathemerize.com\/#website\"},\"datePublished\":\"2021-08-09T08:52:58+00:00\",\"dateModified\":\"2021-11-21T11:12:03+00:00\",\"description\":\"In this post, you will learn differentiability of a function and differentiability at a point and differentiability over an Interval.\",\"breadcrumb\":{\"@id\":\"https:\/\/mathemerize.com\/differentiability-of-a-function\/#breadcrumb\"},\"inLanguage\":\"en-US\",\"potentialAction\":[{\"@type\":\"ReadAction\",\"target\":[\"https:\/\/mathemerize.com\/differentiability-of-a-function\/\"]}]},{\"@type\":\"BreadcrumbList\",\"@id\":\"https:\/\/mathemerize.com\/differentiability-of-a-function\/#breadcrumb\",\"itemListElement\":[{\"@type\":\"ListItem\",\"position\":1,\"name\":\"Home\",\"item\":\"https:\/\/mathemerize.com\/\"},{\"@type\":\"ListItem\",\"position\":2,\"name\":\"Differentiability of a Function – Differentiable vs Continuous\"}]},{\"@type\":\"WebSite\",\"@id\":\"https:\/\/mathemerize.com\/#website\",\"url\":\"https:\/\/mathemerize.com\/\",\"name\":\"Mathemerize\",\"description\":\"Maths Tutorials - Study Math Online\",\"publisher\":{\"@id\":\"https:\/\/mathemerize.com\/#organization\"},\"potentialAction\":[{\"@type\":\"SearchAction\",\"target\":{\"@type\":\"EntryPoint\",\"urlTemplate\":\"https:\/\/mathemerize.com\/?s={search_term_string}\"},\"query-input\":\"required name=search_term_string\"}],\"inLanguage\":\"en-US\"},{\"@type\":\"Organization\",\"@id\":\"https:\/\/mathemerize.com\/#organization\",\"name\":\"Mathemerize\",\"url\":\"https:\/\/mathemerize.com\/\",\"logo\":{\"@type\":\"ImageObject\",\"inLanguage\":\"en-US\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/\",\"url\":\"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1\",\"contentUrl\":\"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1\",\"width\":140,\"height\":96,\"caption\":\"Mathemerize\"},\"image\":{\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/\"},\"sameAs\":[\"https:\/\/www.instagram.com\/mathemerize\/\"]},{\"@type\":\"Person\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df\",\"name\":\"mathemerize\",\"image\":{\"@type\":\"ImageObject\",\"inLanguage\":\"en-US\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/person\/image\/\",\"url\":\"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g\",\"contentUrl\":\"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g\",\"caption\":\"mathemerize\"},\"sameAs\":[\"https:\/\/mathemerize.com\"],\"url\":\"https:\/\/mathemerize.com\/author\/mathemerize\/\"}]}<\/script>\n<!-- \/ Yoast SEO plugin. -->","yoast_head_json":{"title":"Differentiability of a Function - Differentiable vs Continuous","description":"In this post, you will learn differentiability of a function and differentiability at a point and differentiability over an Interval.","robots":{"index":"index","follow":"follow","max-snippet":"max-snippet:-1","max-image-preview":"max-image-preview:large","max-video-preview":"max-video-preview:-1"},"canonical":"https:\/\/mathemerize.com\/differentiability-of-a-function\/","og_locale":"en_US","og_type":"article","og_title":"Differentiability of a Function - Differentiable vs Continuous","og_description":"In this post, you will learn differentiability of a function and differentiability at a point and differentiability over an Interval.","og_url":"https:\/\/mathemerize.com\/differentiability-of-a-function\/","og_site_name":"Mathemerize","article_published_time":"2021-08-09T08:52:58+00:00","article_modified_time":"2021-11-21T11:12:03+00:00","author":"mathemerize","twitter_card":"summary_large_image","twitter_misc":{"Written by":"mathemerize","Est. reading time":"3 minutes"},"schema":{"@context":"https:\/\/schema.org","@graph":[{"@type":"Article","@id":"https:\/\/mathemerize.com\/differentiability-of-a-function\/#article","isPartOf":{"@id":"https:\/\/mathemerize.com\/differentiability-of-a-function\/"},"author":{"name":"mathemerize","@id":"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df"},"headline":"Differentiability of a Function – Differentiable vs Continuous","datePublished":"2021-08-09T08:52:58+00:00","dateModified":"2021-11-21T11:12:03+00:00","mainEntityOfPage":{"@id":"https:\/\/mathemerize.com\/differentiability-of-a-function\/"},"wordCount":684,"commentCount":0,"publisher":{"@id":"https:\/\/mathemerize.com\/#organization"},"keywords":["differentiability","differentiability at a point","Differentiability of a Function"],"articleSection":["Differentiability"],"inLanguage":"en-US","potentialAction":[{"@type":"CommentAction","name":"Comment","target":["https:\/\/mathemerize.com\/differentiability-of-a-function\/#respond"]}]},{"@type":"WebPage","@id":"https:\/\/mathemerize.com\/differentiability-of-a-function\/","url":"https:\/\/mathemerize.com\/differentiability-of-a-function\/","name":"Differentiability of a Function - Differentiable vs Continuous","isPartOf":{"@id":"https:\/\/mathemerize.com\/#website"},"datePublished":"2021-08-09T08:52:58+00:00","dateModified":"2021-11-21T11:12:03+00:00","description":"In this post, you will learn differentiability of a function and differentiability at a point and differentiability over an Interval.","breadcrumb":{"@id":"https:\/\/mathemerize.com\/differentiability-of-a-function\/#breadcrumb"},"inLanguage":"en-US","potentialAction":[{"@type":"ReadAction","target":["https:\/\/mathemerize.com\/differentiability-of-a-function\/"]}]},{"@type":"BreadcrumbList","@id":"https:\/\/mathemerize.com\/differentiability-of-a-function\/#breadcrumb","itemListElement":[{"@type":"ListItem","position":1,"name":"Home","item":"https:\/\/mathemerize.com\/"},{"@type":"ListItem","position":2,"name":"Differentiability of a Function – Differentiable vs Continuous"}]},{"@type":"WebSite","@id":"https:\/\/mathemerize.com\/#website","url":"https:\/\/mathemerize.com\/","name":"Mathemerize","description":"Maths Tutorials - Study Math Online","publisher":{"@id":"https:\/\/mathemerize.com\/#organization"},"potentialAction":[{"@type":"SearchAction","target":{"@type":"EntryPoint","urlTemplate":"https:\/\/mathemerize.com\/?s={search_term_string}"},"query-input":"required name=search_term_string"}],"inLanguage":"en-US"},{"@type":"Organization","@id":"https:\/\/mathemerize.com\/#organization","name":"Mathemerize","url":"https:\/\/mathemerize.com\/","logo":{"@type":"ImageObject","inLanguage":"en-US","@id":"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/","url":"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1","contentUrl":"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1","width":140,"height":96,"caption":"Mathemerize"},"image":{"@id":"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/"},"sameAs":["https:\/\/www.instagram.com\/mathemerize\/"]},{"@type":"Person","@id":"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df","name":"mathemerize","image":{"@type":"ImageObject","inLanguage":"en-US","@id":"https:\/\/mathemerize.com\/#\/schema\/person\/image\/","url":"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g","contentUrl":"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g","caption":"mathemerize"},"sameAs":["https:\/\/mathemerize.com"],"url":"https:\/\/mathemerize.com\/author\/mathemerize\/"}]}},"jetpack_featured_media_url":"","_links":{"self":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts\/3837"}],"collection":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/users\/1"}],"replies":[{"embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/comments?post=3837"}],"version-history":[{"count":7,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts\/3837\/revisions"}],"predecessor-version":[{"id":8435,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts\/3837\/revisions\/8435"}],"wp:attachment":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/media?parent=3837"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/categories?post=3837"},{"taxonomy":"post_tag","embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/tags?post=3837"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}