{"id":3849,"date":"2021-08-09T12:49:07","date_gmt":"2021-08-09T12:49:07","guid":{"rendered":"https:\/\/mathemerize.com\/?p=3849"},"modified":"2021-11-26T16:32:03","modified_gmt":"2021-11-26T11:02:03","slug":"domain-range-of-inverse-trigonometric","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/domain-range-of-inverse-trigonometric\/","title":{"rendered":"Inverse Trigonometric Function Class 12 – Domain & Range"},"content":{"rendered":"

Here, you will learn domain and range of inverse trigonometric function class 12.<\/p>\n

Let’s begin – <\/p>\n

Inverse Trigonometric Function<\/h2>\n

The inverse trigonometric functions, denoted by \\(sin^{-1}x\\) or (arc sinx), \\(cos^{-1}x\\) etc., denote the angles whose sine, cosine etc, is equal to x. The angles are usually smallest angles, except in case of \\(cot^{-1}x\\) and if the positive & negative angles have same numerical value, the positive angle has been chosen.<\/p>\n

It is worthwhile noting that the function sinx, cosx, tanx, cotx, cosecx, secx are in general not invertible. Their inverse is defined by choosing an appropriate domain & co-domain so that they become invertible. For this reason the chosen value is usually the simplest and easy way to remember.<\/p>\n

Domain and Range <\/h2>\n\n\n\n \n \n \n \n \n \n \n
S.No<\/td>\n f(x)<\/td>\n Domain<\/td>\n Range<\/td>\n <\/tr>\n
1<\/td>\n \\(sin^{-1}x\\)<\/td>\n |x| \\(\\le\\) 1<\/td>\n [-\\(\\pi\\over 2\\), \\(\\pi\\over 2\\)]<\/td>\n <\/tr>\n
2<\/td>\n \\(cos^{-1}x\\)<\/td>\n |x| \\(\\le\\) 1<\/td>\n [0, \\(\\pi\\)]<\/td>\n <\/tr>\n
3<\/td>\n \\(tan^{-1}x\\)<\/td>\n x \\(\\in\\) R<\/td>\n (-\\(\\pi\\over 2\\), \\(\\pi\\over 2\\))<\/td>\n <\/tr>\n
4<\/td>\n \\(sec^{-1}x\\)<\/td>\n |x| \\(\\ge\\) 1<\/td>\n [0, \\(\\pi\\)] – {\\(\\pi\\over 2\\)} or [0, \\(\\pi\\over 2\\)) \\(\\cup\\) (\\(\\pi\\over 2\\), \\(\\pi\\)]<\/td>\n <\/tr>\n
5<\/td>\n \\(cosec^{-1}x\\)<\/td>\n |x| \\(\\ge\\) 1<\/td>\n [-\\(\\pi\\over 2\\), \\(\\pi\\over 2\\)] – {0}<\/td>\n <\/tr>\n
6<\/td>\n \\(cot^{-1}x\\)<\/td>\n x \\(\\in\\) R<\/td>\n (0, \\(\\pi\\))<\/td>\n <\/tr>\n <\/tbody><\/table>
\n\n\n

Note :<\/strong><\/p>\n

(i) All the inverse trigonometric functions represent an angle.<\/p>\n

(ii) If x > 0, then all six inverse trigonometric functions viz \\(sin^{-1}x\\), \\(cos^{-1}x\\), \\(tan^{-1}x\\), \\(sec^{-1}x\\), \\(cosec^{-1}x\\), \\(cot^{-1}x\\) represent an acute angle.<\/p>\n

(iii) If x < 0, then \\(sin^{-1}x\\), \\(tan^{-1}x\\) & \\(cosec^{-1}x\\) represent an angle from -\\(\\pi\\over 2\\) to 0 (IV quadrant)<\/p>\n

(iv) If x < 0, then \\(cos^{-1}x\\), \\(cot^{-1}x\\), & \\(sec^{-1}x\\) represent an obtuse angle. (II quadrant)<\/p>\n

(v) Third (III) quadrant is never used in range of inverse trigonometric function.<\/p>\n\n\n

Example : <\/span> The value of \\(tan^{-1}(1)\\) + \\(cos^{-1}({-1\\over 2})\\) + \\(sin^{-1}({-1\\over 2})\\) is equal to – <\/p>\n

Solution :<\/span> We have, \\(tan^{-1}(1)\\) + \\(cos^{-1}({-1\\over 2})\\) + \\(sin^{-1}({-1\\over 2})\\)

\n= \\(\\pi\\over 4\\) + \\(2\\pi\\over 3\\) – \\(\\pi\\over 6\\) = \\(3\\pi\\over 4\\)

<\/p>\n\n\n

Hope, you learnt domain and range of inverse trigonometric function class 12, learn more concepts of inverse trigonometric function<\/a><\/span> and practice more questions to get ahead in competition. Good Luck!\u00a0\u00a0<\/p>\n\n\n

\n
Next – Properties of inverse trigonometric function<\/a><\/div>\n<\/div>\n\n\n\n
<\/div>\n","protected":false},"excerpt":{"rendered":"

Here, you will learn domain and range of inverse trigonometric function class 12. Let’s begin –  Inverse Trigonometric Function The inverse trigonometric functions, denoted by \\(sin^{-1}x\\) or (arc sinx), \\(cos^{-1}x\\) etc., denote the angles whose sine, cosine etc, is equal to x. The angles are usually smallest angles, except in case of \\(cot^{-1}x\\) and if …<\/p>\n

Inverse Trigonometric Function Class 12 – Domain & Range<\/span> Read More »<\/a><\/p>\n","protected":false},"author":1,"featured_media":0,"comment_status":"open","ping_status":"closed","sticky":false,"template":"","format":"standard","meta":{"site-sidebar-layout":"default","site-content-layout":"default","ast-global-header-display":"","ast-main-header-display":"","ast-hfb-above-header-display":"","ast-hfb-below-header-display":"","ast-hfb-mobile-header-display":"","site-post-title":"","ast-breadcrumbs-content":"","ast-featured-img":"","footer-sml-layout":"","theme-transparent-header-meta":"default","adv-header-id-meta":"","stick-header-meta":"","header-above-stick-meta":"","header-main-stick-meta":"","header-below-stick-meta":""},"categories":[27],"tags":[447,445],"yoast_head":"\nInverse Trigonometric Function Class 12 - Domain & Range<\/title>\n<meta name=\"description\" content=\"In this post, you will learn domain and range of inverse trigonometric function class 12 and properties of these functions.\" \/>\n<meta name=\"robots\" content=\"index, follow, max-snippet:-1, max-image-preview:large, max-video-preview:-1\" \/>\n<link rel=\"canonical\" href=\"https:\/\/mathemerize.com\/domain-range-of-inverse-trigonometric\/\" \/>\n<meta property=\"og:locale\" content=\"en_US\" \/>\n<meta property=\"og:type\" content=\"article\" \/>\n<meta property=\"og:title\" content=\"Inverse Trigonometric Function Class 12 - Domain & Range\" \/>\n<meta property=\"og:description\" content=\"In this post, you will learn domain and range of inverse trigonometric function class 12 and properties of these functions.\" \/>\n<meta property=\"og:url\" content=\"https:\/\/mathemerize.com\/domain-range-of-inverse-trigonometric\/\" \/>\n<meta property=\"og:site_name\" content=\"Mathemerize\" \/>\n<meta property=\"article:published_time\" content=\"2021-08-09T12:49:07+00:00\" \/>\n<meta property=\"article:modified_time\" content=\"2021-11-26T11:02:03+00:00\" \/>\n<meta name=\"author\" content=\"mathemerize\" \/>\n<meta name=\"twitter:card\" content=\"summary_large_image\" \/>\n<meta name=\"twitter:label1\" content=\"Written by\" \/>\n\t<meta name=\"twitter:data1\" content=\"mathemerize\" \/>\n\t<meta name=\"twitter:label2\" content=\"Est. reading time\" \/>\n\t<meta name=\"twitter:data2\" content=\"2 minutes\" \/>\n<script type=\"application\/ld+json\" class=\"yoast-schema-graph\">{\"@context\":\"https:\/\/schema.org\",\"@graph\":[{\"@type\":\"Article\",\"@id\":\"https:\/\/mathemerize.com\/domain-range-of-inverse-trigonometric\/#article\",\"isPartOf\":{\"@id\":\"https:\/\/mathemerize.com\/domain-range-of-inverse-trigonometric\/\"},\"author\":{\"name\":\"mathemerize\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df\"},\"headline\":\"Inverse Trigonometric Function Class 12 – Domain & Range\",\"datePublished\":\"2021-08-09T12:49:07+00:00\",\"dateModified\":\"2021-11-26T11:02:03+00:00\",\"mainEntityOfPage\":{\"@id\":\"https:\/\/mathemerize.com\/domain-range-of-inverse-trigonometric\/\"},\"wordCount\":381,\"commentCount\":0,\"publisher\":{\"@id\":\"https:\/\/mathemerize.com\/#organization\"},\"keywords\":[\"domain and range of inverse trigonometric functions\",\"inverse trigonometric functions\"],\"articleSection\":[\"Inverse Trigonometric Function\"],\"inLanguage\":\"en-US\",\"potentialAction\":[{\"@type\":\"CommentAction\",\"name\":\"Comment\",\"target\":[\"https:\/\/mathemerize.com\/domain-range-of-inverse-trigonometric\/#respond\"]}]},{\"@type\":\"WebPage\",\"@id\":\"https:\/\/mathemerize.com\/domain-range-of-inverse-trigonometric\/\",\"url\":\"https:\/\/mathemerize.com\/domain-range-of-inverse-trigonometric\/\",\"name\":\"Inverse Trigonometric Function Class 12 - Domain & Range\",\"isPartOf\":{\"@id\":\"https:\/\/mathemerize.com\/#website\"},\"datePublished\":\"2021-08-09T12:49:07+00:00\",\"dateModified\":\"2021-11-26T11:02:03+00:00\",\"description\":\"In this post, you will learn domain and range of inverse trigonometric function class 12 and properties of these functions.\",\"breadcrumb\":{\"@id\":\"https:\/\/mathemerize.com\/domain-range-of-inverse-trigonometric\/#breadcrumb\"},\"inLanguage\":\"en-US\",\"potentialAction\":[{\"@type\":\"ReadAction\",\"target\":[\"https:\/\/mathemerize.com\/domain-range-of-inverse-trigonometric\/\"]}]},{\"@type\":\"BreadcrumbList\",\"@id\":\"https:\/\/mathemerize.com\/domain-range-of-inverse-trigonometric\/#breadcrumb\",\"itemListElement\":[{\"@type\":\"ListItem\",\"position\":1,\"name\":\"Home\",\"item\":\"https:\/\/mathemerize.com\/\"},{\"@type\":\"ListItem\",\"position\":2,\"name\":\"Inverse Trigonometric Function Class 12 – Domain & Range\"}]},{\"@type\":\"WebSite\",\"@id\":\"https:\/\/mathemerize.com\/#website\",\"url\":\"https:\/\/mathemerize.com\/\",\"name\":\"Mathemerize\",\"description\":\"Maths Tutorials - Study Math Online\",\"publisher\":{\"@id\":\"https:\/\/mathemerize.com\/#organization\"},\"potentialAction\":[{\"@type\":\"SearchAction\",\"target\":{\"@type\":\"EntryPoint\",\"urlTemplate\":\"https:\/\/mathemerize.com\/?s={search_term_string}\"},\"query-input\":\"required name=search_term_string\"}],\"inLanguage\":\"en-US\"},{\"@type\":\"Organization\",\"@id\":\"https:\/\/mathemerize.com\/#organization\",\"name\":\"Mathemerize\",\"url\":\"https:\/\/mathemerize.com\/\",\"logo\":{\"@type\":\"ImageObject\",\"inLanguage\":\"en-US\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/\",\"url\":\"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1\",\"contentUrl\":\"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1\",\"width\":140,\"height\":96,\"caption\":\"Mathemerize\"},\"image\":{\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/\"},\"sameAs\":[\"https:\/\/www.instagram.com\/mathemerize\/\"]},{\"@type\":\"Person\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df\",\"name\":\"mathemerize\",\"image\":{\"@type\":\"ImageObject\",\"inLanguage\":\"en-US\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/person\/image\/\",\"url\":\"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g\",\"contentUrl\":\"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g\",\"caption\":\"mathemerize\"},\"sameAs\":[\"https:\/\/mathemerize.com\"],\"url\":\"https:\/\/mathemerize.com\/author\/mathemerize\/\"}]}<\/script>\n<!-- \/ Yoast SEO plugin. -->","yoast_head_json":{"title":"Inverse Trigonometric Function Class 12 - Domain & Range","description":"In this post, you will learn domain and range of inverse trigonometric function class 12 and properties of these functions.","robots":{"index":"index","follow":"follow","max-snippet":"max-snippet:-1","max-image-preview":"max-image-preview:large","max-video-preview":"max-video-preview:-1"},"canonical":"https:\/\/mathemerize.com\/domain-range-of-inverse-trigonometric\/","og_locale":"en_US","og_type":"article","og_title":"Inverse Trigonometric Function Class 12 - Domain & Range","og_description":"In this post, you will learn domain and range of inverse trigonometric function class 12 and properties of these functions.","og_url":"https:\/\/mathemerize.com\/domain-range-of-inverse-trigonometric\/","og_site_name":"Mathemerize","article_published_time":"2021-08-09T12:49:07+00:00","article_modified_time":"2021-11-26T11:02:03+00:00","author":"mathemerize","twitter_card":"summary_large_image","twitter_misc":{"Written by":"mathemerize","Est. reading time":"2 minutes"},"schema":{"@context":"https:\/\/schema.org","@graph":[{"@type":"Article","@id":"https:\/\/mathemerize.com\/domain-range-of-inverse-trigonometric\/#article","isPartOf":{"@id":"https:\/\/mathemerize.com\/domain-range-of-inverse-trigonometric\/"},"author":{"name":"mathemerize","@id":"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df"},"headline":"Inverse Trigonometric Function Class 12 – Domain & Range","datePublished":"2021-08-09T12:49:07+00:00","dateModified":"2021-11-26T11:02:03+00:00","mainEntityOfPage":{"@id":"https:\/\/mathemerize.com\/domain-range-of-inverse-trigonometric\/"},"wordCount":381,"commentCount":0,"publisher":{"@id":"https:\/\/mathemerize.com\/#organization"},"keywords":["domain and range of inverse trigonometric functions","inverse trigonometric functions"],"articleSection":["Inverse Trigonometric Function"],"inLanguage":"en-US","potentialAction":[{"@type":"CommentAction","name":"Comment","target":["https:\/\/mathemerize.com\/domain-range-of-inverse-trigonometric\/#respond"]}]},{"@type":"WebPage","@id":"https:\/\/mathemerize.com\/domain-range-of-inverse-trigonometric\/","url":"https:\/\/mathemerize.com\/domain-range-of-inverse-trigonometric\/","name":"Inverse Trigonometric Function Class 12 - Domain & Range","isPartOf":{"@id":"https:\/\/mathemerize.com\/#website"},"datePublished":"2021-08-09T12:49:07+00:00","dateModified":"2021-11-26T11:02:03+00:00","description":"In this post, you will learn domain and range of inverse trigonometric function class 12 and properties of these functions.","breadcrumb":{"@id":"https:\/\/mathemerize.com\/domain-range-of-inverse-trigonometric\/#breadcrumb"},"inLanguage":"en-US","potentialAction":[{"@type":"ReadAction","target":["https:\/\/mathemerize.com\/domain-range-of-inverse-trigonometric\/"]}]},{"@type":"BreadcrumbList","@id":"https:\/\/mathemerize.com\/domain-range-of-inverse-trigonometric\/#breadcrumb","itemListElement":[{"@type":"ListItem","position":1,"name":"Home","item":"https:\/\/mathemerize.com\/"},{"@type":"ListItem","position":2,"name":"Inverse Trigonometric Function Class 12 – Domain & Range"}]},{"@type":"WebSite","@id":"https:\/\/mathemerize.com\/#website","url":"https:\/\/mathemerize.com\/","name":"Mathemerize","description":"Maths Tutorials - Study Math Online","publisher":{"@id":"https:\/\/mathemerize.com\/#organization"},"potentialAction":[{"@type":"SearchAction","target":{"@type":"EntryPoint","urlTemplate":"https:\/\/mathemerize.com\/?s={search_term_string}"},"query-input":"required name=search_term_string"}],"inLanguage":"en-US"},{"@type":"Organization","@id":"https:\/\/mathemerize.com\/#organization","name":"Mathemerize","url":"https:\/\/mathemerize.com\/","logo":{"@type":"ImageObject","inLanguage":"en-US","@id":"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/","url":"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1","contentUrl":"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1","width":140,"height":96,"caption":"Mathemerize"},"image":{"@id":"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/"},"sameAs":["https:\/\/www.instagram.com\/mathemerize\/"]},{"@type":"Person","@id":"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df","name":"mathemerize","image":{"@type":"ImageObject","inLanguage":"en-US","@id":"https:\/\/mathemerize.com\/#\/schema\/person\/image\/","url":"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g","contentUrl":"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g","caption":"mathemerize"},"sameAs":["https:\/\/mathemerize.com"],"url":"https:\/\/mathemerize.com\/author\/mathemerize\/"}]}},"jetpack_featured_media_url":"","_links":{"self":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts\/3849"}],"collection":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/users\/1"}],"replies":[{"embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/comments?post=3849"}],"version-history":[{"count":9,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts\/3849\/revisions"}],"predecessor-version":[{"id":8662,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts\/3849\/revisions\/8662"}],"wp:attachment":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/media?parent=3849"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/categories?post=3849"},{"taxonomy":"post_tag","embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/tags?post=3849"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}