{"id":3934,"date":"2021-08-10T12:51:27","date_gmt":"2021-08-10T12:51:27","guid":{"rendered":"https:\/\/mathemerize.com\/?p=3934"},"modified":"2022-02-16T21:50:28","modified_gmt":"2022-02-16T16:20:28","slug":"different-types-of-ellipse","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/different-types-of-ellipse\/","title":{"rendered":"Different Types of Ellipse Equations and Graph"},"content":{"rendered":"
Here, you will learn different types of ellipse and their basic definitions with their graphs.<\/p>\n
Let’s begin –<\/p>\n
(a)\u00a0 First type of Ellipse<\/strong> is<\/p>\n \\(x^2\\over a^2\\) + \\(y^2\\over b^2\\) = 1, where a > b<\/p>\n<\/blockquote>\n <\/p>\n \u00a0<\/p>\n (a)\u00a0 AA’ = Major axis = 2a<\/p>\n (b)\u00a0 BB’ = Minor axis = 2b<\/p>\n (c)\u00a0 Vertices = (\\(\\pm a\\), 0)<\/p>\n (d)\u00a0 Latus rectum LL’ = L1L1′ = \\(2a^2\\over b\\), equation x = \\(\\pm\\)ae<\/p>\n (e)\u00a0 Ends of latus rectum are : L(ae, \\(b^2\\over a\\)), L'(ae, -\\(b^2\\over a\\)), L1(-ae, \\(b^2\\over a\\)), L1′(-ae, -\\(b^2\\over a\\))<\/p>\n (f)\u00a0 Equation of directrix y = \\(\\pm a\\over e\\)<\/p>\n (g)\u00a0 Eccentricity : e = \\(\\sqrt{1 – {b^2\\over a^2}}\\)<\/p>\n (h)\u00a0 Foci : S = (ae, 0) & S’ = (-ae, 0)<\/p>\n \u00a0<\/p>\n (b) \u00a0Second type of Ellipse<\/strong> is<\/p>\n \\(x^2\\over a^2\\) + \\(y^2\\over b^2\\) = 1 (a < b)<\/p>\n<\/blockquote>\n <\/p>\n \u00a0<\/p>\n (a)\u00a0 AA’ = Minor axis = 2a<\/p>\n (b)\u00a0 BB’ = Major axis = 2b<\/p>\n (c)\u00a0 Vertices = (0, \\(\\pm b\\))<\/p>\n (d)\u00a0 Latus rectum LL’ = L1L1′ = \\(2a^2\\over b\\), equation y = \\(\\pm\\)be<\/p>\n (e)\u00a0 Ends of latus rectum are : L(\\(a^2\\over b\\), be), L'(-\\(a^2\\over b\\), be), L1(\\(a^2\\over b\\), -be), L1′(-\\(a^2\\over b\\), -be)<\/p>\n (f)\u00a0 Equation of directrix y = \\(\\pm b\\over e\\)<\/p>\n (g)\u00a0 Eccentricity : e = \\(\\sqrt{1 – {a^2\\over b^2}}\\)<\/p>\n (h)\u00a0 Foci : S = (0, be) & S’ = (0, -be)<\/p>\n The line y = mx + c meets the ellipse \\({x_1}^2\\over a^2\\) + \\({y_1}^2\\over b^2\\) = 1 in two real, coincident, or imaginary according as \\(c^2\\) is < = or > \\(a^2m^2 + b^2\\).<\/p>\n Hence y = mx + c is tangent to the ellipse \\({x_1}^2\\over a^2\\) + \\({y_1}^2\\over b^2\\) = 1 if \\(c^2\\) = \\(a^2m^2 + b^2\\)<\/p>\n The foci of an ellipse are \\((\\pm 2, 0)\\) and its eccentricity is 1\/2, find its equation.<\/a><\/p>\n\n
\n
Line and an ellipse<\/strong><\/h4>\n
\nRelated Questions<\/h3>\n