{"id":3948,"date":"2021-08-11T11:47:43","date_gmt":"2021-08-11T11:47:43","guid":{"rendered":"https:\/\/mathemerize.com\/?p=3948"},"modified":"2021-11-26T16:43:23","modified_gmt":"2021-11-26T11:13:23","slug":"definition-of-limit-in-calculus","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/definition-of-limit-in-calculus\/","title":{"rendered":"Definition of Limit in Calculus – Theorem of Limit"},"content":{"rendered":"

Here, you will learn definition of limit in calculus, left hand limit, right hand limit and fundamental theorem of limit.<\/p>\n

Let’s begin –<\/p>\n

Definition of Limit in Calculus<\/h2>\n

Let f(x) be defined on an open interval about ‘a’ except possibly at ‘a’ itself. If f(x) gets arbitrarily close to L(a finite number) for all x sufficiently close to ‘a’ we say that f(x) approaches the limit L as x approaches ‘a’ and we write \\(\\displaystyle{\\lim_{x \\to a}}\\) f(x) = L and say “the limit of f(x), as x approaches a, equals L”.<\/p>\n

This implies if we can make the value of f(x) arbitrarily close to L(as close to L as we like) by taking x to be sufficiently close to a(on either side of a) but not equal to a.<\/p>\n

Left hand limit and Right hand limit of a function<\/h2>\n

Left hand limit<\/strong><\/h4>\n

The value to which f(x) approaches, as tends to ‘a’ from the left hand side (x \\(\\rightarrow\\) \\(a^{-}\\)) is called left hand limit of f(x) at x = a.<\/p>\n

\n

Symbolically, LHL = \\(\\displaystyle{\\lim_{x \\to a^-}}\\) f(x) = \\(\\displaystyle{\\lim_{h \\to 0}}\\) f(a – h).<\/p>\n<\/blockquote>\n

Right hand limit<\/strong><\/h4>\n

The value to which f(x) approaches, as tends to ‘a’ from the right hand side (x \\(\\rightarrow\\) \\(a^{+}\\)) is called right hand limit of f(x) at x = a.<\/p>\n

\n

Symbolically, RHL = \\(\\displaystyle{\\lim_{x \\to a^+}}\\) f(x) = \\(\\displaystyle{\\lim_{h \\to 0}}\\) f(a + h).<\/p>\n

Limit of a function f(x) is said to exist as, x \\(\\rightarrow\\) a when \\(\\displaystyle{\\lim_{x \\to a^-}}\\) f(x) = \\(\\displaystyle{\\lim_{x \\to a^+}}\\) f(x) = Finite quantity<\/p>\n<\/blockquote>\n

Note :<\/strong><\/p>\n

In \\(\\displaystyle{\\lim_{x \\to a}}\\) f(x), x \\(\\rightarrow\\) a necessarily implies x \\(\\ne\\) a. This is while evaluating limit at x = a, we are not concerned with the value of the function at x = a. In fact the function may or may not be defined at x = a.\u00a0 Also it is necessary to note that if f(x) is defined only on one side of ‘x = a’, one sided limits are good enough to establish the existence of limits, & if f(x) is defined on either side of ‘a’ both sided limits are to be considered.<\/p>\n

As in \\(\\displaystyle{\\lim_{x \\to a}}\\) \\(\\cos^{-1}x\\) = 0, though f(x) is not defined for x > 1, even in it’s immediate vicinity.<\/p>\n

Fundamental theorem of limit<\/h2>\n

Let \\(\\displaystyle{\\lim_{x \\to a}}\\) f(x) = l<\/p>\n

\\(\\displaystyle{\\lim_{x \\to a}}\\) g(x) = m. If l & m exist finitely then :<\/p>\n

(a)\u00a0 Sum rule : \\(\\displaystyle{\\lim_{x \\to a}}\\) {f(x) + g(x)} = l + m<\/p>\n

(b)\u00a0 Difference rule : \\(\\displaystyle{\\lim_{x \\to a}}\\) {f(x) – g(x)} = l – m<\/p>\n

(c)\u00a0 Product rule : \\(\\displaystyle{\\lim_{x \\to a}}\\) f(x).g(x) = l.m<\/p>\n

(d)\u00a0 Quotient rule : \\(\\displaystyle{\\lim_{x \\to a}}\\) \\(f(x)\\over g(x)\\) = \\(l\\over m\\)<\/p>\n

(e)\u00a0 Constant multiple rule : \\(\\displaystyle{\\lim_{x \\to a}}\\) kf(x) = k \\(\\displaystyle{\\lim_{x \\to a}}\\) f(x)<\/p>\n

(f)\u00a0 Power rule : If m and n are integers then \\(\\displaystyle{\\lim_{x \\to a}}\\) \\([f(x)]^{m\/n}\\) = \\(l^{m\/n}\\) provided
\\(l^{m\/n}\\) is a real number.<\/p>\n

(g)\u00a0 \\(\\displaystyle{\\lim_{x \\to a}}\\) f[g(x)] = f(\\(\\displaystyle{\\lim_{x \\to a}}\\) g(x)) = f(m); provided f(x) is continuous at x = m.<\/p>\n\n\n

For Example :<\/span>\\(\\displaystyle{\\lim_{x \\to a}}\\) ln(g(x)) = ln[\\(\\displaystyle{\\lim_{x \\to a}}\\) g(x)] = ln(m); provided lnx is continuous at x = m, m = \\(\\displaystyle{\\lim_{x \\to a}}\\) g(x).

<\/p>\n\n\n\n

\n
Next – How to Solve Indeterminate Forms of Limits<\/a><\/div>\n<\/div>\n\n\n\n
<\/div>\n","protected":false},"excerpt":{"rendered":"

Here, you will learn definition of limit in calculus, left hand limit, right hand limit and fundamental theorem of limit. Let’s begin – Definition of Limit in Calculus Let f(x) be defined on an open interval about ‘a’ except possibly at ‘a’ itself. If f(x) gets arbitrarily close to L(a finite number) for all x …<\/p>\n

Definition of Limit in Calculus – Theorem of Limit<\/span> Read More »<\/a><\/p>\n","protected":false},"author":1,"featured_media":0,"comment_status":"open","ping_status":"closed","sticky":false,"template":"","format":"standard","meta":{"site-sidebar-layout":"default","site-content-layout":"default","ast-global-header-display":"","ast-main-header-display":"","ast-hfb-above-header-display":"","ast-hfb-below-header-display":"","ast-hfb-mobile-header-display":"","site-post-title":"","ast-breadcrumbs-content":"","ast-featured-img":"","footer-sml-layout":"","theme-transparent-header-meta":"default","adv-header-id-meta":"","stick-header-meta":"","header-above-stick-meta":"","header-main-stick-meta":"","header-below-stick-meta":""},"categories":[19],"tags":[455,456],"yoast_head":"\nDefinition of Limit in Calculus - Theorem of Limit<\/title>\n<meta name=\"description\" content=\"In this post, you will learn definition of limit in calculus, left hand limit, right hand limit and fundamental theorem of limit.\" \/>\n<meta name=\"robots\" content=\"index, follow, max-snippet:-1, max-image-preview:large, max-video-preview:-1\" \/>\n<link rel=\"canonical\" href=\"https:\/\/mathemerize.com\/definition-of-limit-in-calculus\/\" \/>\n<meta property=\"og:locale\" content=\"en_US\" \/>\n<meta property=\"og:type\" content=\"article\" \/>\n<meta property=\"og:title\" content=\"Definition of Limit in Calculus - Theorem of Limit\" \/>\n<meta property=\"og:description\" content=\"In this post, you will learn definition of limit in calculus, left hand limit, right hand limit and fundamental theorem of limit.\" \/>\n<meta property=\"og:url\" content=\"https:\/\/mathemerize.com\/definition-of-limit-in-calculus\/\" \/>\n<meta property=\"og:site_name\" content=\"Mathemerize\" \/>\n<meta property=\"article:published_time\" content=\"2021-08-11T11:47:43+00:00\" \/>\n<meta property=\"article:modified_time\" content=\"2021-11-26T11:13:23+00:00\" \/>\n<meta name=\"author\" content=\"mathemerize\" \/>\n<meta name=\"twitter:card\" content=\"summary_large_image\" \/>\n<meta name=\"twitter:label1\" content=\"Written by\" \/>\n\t<meta name=\"twitter:data1\" content=\"mathemerize\" \/>\n\t<meta name=\"twitter:label2\" content=\"Est. reading time\" \/>\n\t<meta name=\"twitter:data2\" content=\"3 minutes\" \/>\n<script type=\"application\/ld+json\" class=\"yoast-schema-graph\">{\"@context\":\"https:\/\/schema.org\",\"@graph\":[{\"@type\":\"Article\",\"@id\":\"https:\/\/mathemerize.com\/definition-of-limit-in-calculus\/#article\",\"isPartOf\":{\"@id\":\"https:\/\/mathemerize.com\/definition-of-limit-in-calculus\/\"},\"author\":{\"name\":\"mathemerize\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df\"},\"headline\":\"Definition of Limit in Calculus – Theorem of Limit\",\"datePublished\":\"2021-08-11T11:47:43+00:00\",\"dateModified\":\"2021-11-26T11:13:23+00:00\",\"mainEntityOfPage\":{\"@id\":\"https:\/\/mathemerize.com\/definition-of-limit-in-calculus\/\"},\"wordCount\":624,\"commentCount\":0,\"publisher\":{\"@id\":\"https:\/\/mathemerize.com\/#organization\"},\"keywords\":[\"fundamental theorem of limit\",\"Limit in Calculus\"],\"articleSection\":[\"Limits\"],\"inLanguage\":\"en-US\",\"potentialAction\":[{\"@type\":\"CommentAction\",\"name\":\"Comment\",\"target\":[\"https:\/\/mathemerize.com\/definition-of-limit-in-calculus\/#respond\"]}]},{\"@type\":\"WebPage\",\"@id\":\"https:\/\/mathemerize.com\/definition-of-limit-in-calculus\/\",\"url\":\"https:\/\/mathemerize.com\/definition-of-limit-in-calculus\/\",\"name\":\"Definition of Limit in Calculus - Theorem of Limit\",\"isPartOf\":{\"@id\":\"https:\/\/mathemerize.com\/#website\"},\"datePublished\":\"2021-08-11T11:47:43+00:00\",\"dateModified\":\"2021-11-26T11:13:23+00:00\",\"description\":\"In this post, you will learn definition of limit in calculus, left hand limit, right hand limit and fundamental theorem of limit.\",\"breadcrumb\":{\"@id\":\"https:\/\/mathemerize.com\/definition-of-limit-in-calculus\/#breadcrumb\"},\"inLanguage\":\"en-US\",\"potentialAction\":[{\"@type\":\"ReadAction\",\"target\":[\"https:\/\/mathemerize.com\/definition-of-limit-in-calculus\/\"]}]},{\"@type\":\"BreadcrumbList\",\"@id\":\"https:\/\/mathemerize.com\/definition-of-limit-in-calculus\/#breadcrumb\",\"itemListElement\":[{\"@type\":\"ListItem\",\"position\":1,\"name\":\"Home\",\"item\":\"https:\/\/mathemerize.com\/\"},{\"@type\":\"ListItem\",\"position\":2,\"name\":\"Definition of Limit in Calculus – Theorem of Limit\"}]},{\"@type\":\"WebSite\",\"@id\":\"https:\/\/mathemerize.com\/#website\",\"url\":\"https:\/\/mathemerize.com\/\",\"name\":\"Mathemerize\",\"description\":\"Maths Tutorials - Study Math Online\",\"publisher\":{\"@id\":\"https:\/\/mathemerize.com\/#organization\"},\"potentialAction\":[{\"@type\":\"SearchAction\",\"target\":{\"@type\":\"EntryPoint\",\"urlTemplate\":\"https:\/\/mathemerize.com\/?s={search_term_string}\"},\"query-input\":\"required name=search_term_string\"}],\"inLanguage\":\"en-US\"},{\"@type\":\"Organization\",\"@id\":\"https:\/\/mathemerize.com\/#organization\",\"name\":\"Mathemerize\",\"url\":\"https:\/\/mathemerize.com\/\",\"logo\":{\"@type\":\"ImageObject\",\"inLanguage\":\"en-US\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/\",\"url\":\"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1\",\"contentUrl\":\"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1\",\"width\":140,\"height\":96,\"caption\":\"Mathemerize\"},\"image\":{\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/\"},\"sameAs\":[\"https:\/\/www.instagram.com\/mathemerize\/\"]},{\"@type\":\"Person\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df\",\"name\":\"mathemerize\",\"image\":{\"@type\":\"ImageObject\",\"inLanguage\":\"en-US\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/person\/image\/\",\"url\":\"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g\",\"contentUrl\":\"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g\",\"caption\":\"mathemerize\"},\"sameAs\":[\"https:\/\/mathemerize.com\"],\"url\":\"https:\/\/mathemerize.com\/author\/mathemerize\/\"}]}<\/script>\n<!-- \/ Yoast SEO plugin. -->","yoast_head_json":{"title":"Definition of Limit in Calculus - Theorem of Limit","description":"In this post, you will learn definition of limit in calculus, left hand limit, right hand limit and fundamental theorem of limit.","robots":{"index":"index","follow":"follow","max-snippet":"max-snippet:-1","max-image-preview":"max-image-preview:large","max-video-preview":"max-video-preview:-1"},"canonical":"https:\/\/mathemerize.com\/definition-of-limit-in-calculus\/","og_locale":"en_US","og_type":"article","og_title":"Definition of Limit in Calculus - Theorem of Limit","og_description":"In this post, you will learn definition of limit in calculus, left hand limit, right hand limit and fundamental theorem of limit.","og_url":"https:\/\/mathemerize.com\/definition-of-limit-in-calculus\/","og_site_name":"Mathemerize","article_published_time":"2021-08-11T11:47:43+00:00","article_modified_time":"2021-11-26T11:13:23+00:00","author":"mathemerize","twitter_card":"summary_large_image","twitter_misc":{"Written by":"mathemerize","Est. reading time":"3 minutes"},"schema":{"@context":"https:\/\/schema.org","@graph":[{"@type":"Article","@id":"https:\/\/mathemerize.com\/definition-of-limit-in-calculus\/#article","isPartOf":{"@id":"https:\/\/mathemerize.com\/definition-of-limit-in-calculus\/"},"author":{"name":"mathemerize","@id":"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df"},"headline":"Definition of Limit in Calculus – Theorem of Limit","datePublished":"2021-08-11T11:47:43+00:00","dateModified":"2021-11-26T11:13:23+00:00","mainEntityOfPage":{"@id":"https:\/\/mathemerize.com\/definition-of-limit-in-calculus\/"},"wordCount":624,"commentCount":0,"publisher":{"@id":"https:\/\/mathemerize.com\/#organization"},"keywords":["fundamental theorem of limit","Limit in Calculus"],"articleSection":["Limits"],"inLanguage":"en-US","potentialAction":[{"@type":"CommentAction","name":"Comment","target":["https:\/\/mathemerize.com\/definition-of-limit-in-calculus\/#respond"]}]},{"@type":"WebPage","@id":"https:\/\/mathemerize.com\/definition-of-limit-in-calculus\/","url":"https:\/\/mathemerize.com\/definition-of-limit-in-calculus\/","name":"Definition of Limit in Calculus - Theorem of Limit","isPartOf":{"@id":"https:\/\/mathemerize.com\/#website"},"datePublished":"2021-08-11T11:47:43+00:00","dateModified":"2021-11-26T11:13:23+00:00","description":"In this post, you will learn definition of limit in calculus, left hand limit, right hand limit and fundamental theorem of limit.","breadcrumb":{"@id":"https:\/\/mathemerize.com\/definition-of-limit-in-calculus\/#breadcrumb"},"inLanguage":"en-US","potentialAction":[{"@type":"ReadAction","target":["https:\/\/mathemerize.com\/definition-of-limit-in-calculus\/"]}]},{"@type":"BreadcrumbList","@id":"https:\/\/mathemerize.com\/definition-of-limit-in-calculus\/#breadcrumb","itemListElement":[{"@type":"ListItem","position":1,"name":"Home","item":"https:\/\/mathemerize.com\/"},{"@type":"ListItem","position":2,"name":"Definition of Limit in Calculus – Theorem of Limit"}]},{"@type":"WebSite","@id":"https:\/\/mathemerize.com\/#website","url":"https:\/\/mathemerize.com\/","name":"Mathemerize","description":"Maths Tutorials - Study Math Online","publisher":{"@id":"https:\/\/mathemerize.com\/#organization"},"potentialAction":[{"@type":"SearchAction","target":{"@type":"EntryPoint","urlTemplate":"https:\/\/mathemerize.com\/?s={search_term_string}"},"query-input":"required name=search_term_string"}],"inLanguage":"en-US"},{"@type":"Organization","@id":"https:\/\/mathemerize.com\/#organization","name":"Mathemerize","url":"https:\/\/mathemerize.com\/","logo":{"@type":"ImageObject","inLanguage":"en-US","@id":"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/","url":"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1","contentUrl":"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1","width":140,"height":96,"caption":"Mathemerize"},"image":{"@id":"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/"},"sameAs":["https:\/\/www.instagram.com\/mathemerize\/"]},{"@type":"Person","@id":"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df","name":"mathemerize","image":{"@type":"ImageObject","inLanguage":"en-US","@id":"https:\/\/mathemerize.com\/#\/schema\/person\/image\/","url":"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g","contentUrl":"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g","caption":"mathemerize"},"sameAs":["https:\/\/mathemerize.com"],"url":"https:\/\/mathemerize.com\/author\/mathemerize\/"}]}},"jetpack_featured_media_url":"","_links":{"self":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts\/3948"}],"collection":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/users\/1"}],"replies":[{"embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/comments?post=3948"}],"version-history":[{"count":10,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts\/3948\/revisions"}],"predecessor-version":[{"id":8668,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts\/3948\/revisions\/8668"}],"wp:attachment":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/media?parent=3948"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/categories?post=3948"},{"taxonomy":"post_tag","embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/tags?post=3948"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}