{"id":4018,"date":"2021-08-13T20:55:02","date_gmt":"2021-08-13T20:55:02","guid":{"rendered":"https:\/\/mathemerize.com\/?p=4018"},"modified":"2021-11-17T17:43:43","modified_gmt":"2021-11-17T12:13:43","slug":"sum-of-gp-series-formula","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/sum-of-gp-series-formula\/","title":{"rendered":"Sum of GP Series Formula | Properties of GP"},"content":{"rendered":"

Here you will learn what is geometric progression (gp) and sum of gp series formula and properties of gp.<\/p>\n

Let’s begin –<\/p>\n

Sum of GP Series Formula<\/h2>\n

G.P. is a sequence of non zero numbers each of the succeeding term is equal to the preceding term multiplied by a constant. Thus in GP the ratio of successive terms is constant. This constant factor is called the COMMON RATIO of the sequence & is obtained by dividing any term by the immediately previous term. Therefore a, ar, a\\(r^2\\), ……. is a GP with ‘a’ as the first term and ‘r’ as common ratio.<\/p>\n

(a)\u00a0 nth term of GP<\/h3>\n
\n

\\(T_n\\) = a\\(r^{n-1}\\)<\/p>\n<\/blockquote>\n

(b)\u00a0 Sum of the first n terms of GP<\/h3>\n
\n

\\(S_n\\) = \\(a(r^n – 1)\\over {r – 1}\\), if r \\(\\ne\\) 1<\/p>\n<\/blockquote>\n

(c)\u00a0 Sum of infinite G.P. or sum of gp to infinity<\/a>,\u00a0<\/h3>\n
\n

\\(S_n\\) = \\(a\\over {1 – r}\\); 0 < |r| < 1\u00a0<\/p>\n<\/blockquote>\n\n\n

Example : <\/span>Find the sum of 7 terms of the gp 3,6, 12, ……<\/p>\n

Solution : <\/span>Here a = 3, r = 2

\n\t\t \\(S_7\\) = \\(a(r^7 – 1)\\over {r – 1}\\)

\n\t\t \\(T_n\\) = \\(3(2^7 – 1)\\over {2 – 1}\\)

\n\t\t = 3(128 – 1)

\n\t\t = 381

\n\t\t <\/p>\n\n\n

Properties of GP<\/h2>\n

(a)\u00a0 If each term of a G.P. be multiplied or divided by the some non-zero quantity, then the resulting sequence is also a G.P.<\/p>\n

(b)\u00a0 Three consecutive terms of a G.P. : a\/r, a, ar;<\/p>\n

Four consecutive terms of a G.P. : \\(a\/r^3\\), a\/r, ar \\(ar^3\\)<\/p>\n

(c)\u00a0 If a, b, c are in G.P. then \\(b^2\\) = ac.<\/p>\n

(d)\u00a0 If in a G.P, the product of two terms which are equidistant from the first and the last term, is constant and is equal to the product of first and last term. => \\(T_k\\).\\(T_{n-k+1}\\) = constant = a.l<\/p>\n

(e)\u00a0 If each term of a G.P. be raised to the same power, then resulting sequence is also a G.P.<\/p>\n

(f)\u00a0 In a G.P., \\({T_r}^2\\) = \\(T_{r-k}\\).\\(T_{r+k}\\), k < r, r \\(\\ne\\) 1<\/p>\n

(g)\u00a0 If the terms of a given G.P. are chosen at regular intervals, then the new sequence is also a G.P.<\/p>\n

(h)\u00a0 If \\(a_1\\), \\(a_2\\), \\(a_3\\)……\\(a_n\\) is a G.P. of positive terms, then log \\(a_1\\), log \\(a_2\\)……log \\(a_n\\) is an A.P. and vice-versa.<\/p>\n

(i)\u00a0 If \\(a_1\\), \\(a_2\\), \\(a_3\\)…… and \\(b_1\\), \\(b_2\\), \\(b_3\\)…… are two G.P.’s then \\(a_1\\)\\(b_1\\), \\(a_2\\)\\(b_2\\), \\(a_3\\)\\(b_3\\)……. & \\(a_1 \\over b_1\\), \\(a_2 \\over b_2\\), \\(a_3 \\over b_3\\)……. is also in G.P.<\/p>\n\n\n

Example : <\/span> If a, b, c, d and p are distinct real numbers such that\n\t\t\t \\((a^2 + b^2 + c^2)p^2\\) – 2p(ab + bc + cd) + \\((b^2 + c^2 + d^2)\\) \\(\\leq\\) 0 then a, b, c, d are in<\/p>\n

Solution : <\/span>Here, the given condition \\((a^2 + b^2 + c^2)p^2\\) – 2p(ab + bc + cd) + \\((b^2 + c^2 + d^2)\\) \\(\\leq\\) 0

\n\t\t   => \\((ap – b)^2\\) + \\((bp – c)^2\\) + \\((cp – d)^2\\) \\(\\leq\\) 0

\n\t\t \\(\\because\\)   a square cannot be negative

\n\t\t \\(\\therefore\\)    ap – b = 0, bp – c = 0, cp – d = 0

\n\t\t => p = \\(b \\over a\\) = \\(c \\over b\\) = \\(d \\over c\\) => a, b, c, d are in G.P.

<\/p>\n\n\n


\n

Related Questions<\/h3>\n

The sum of first 20 terms of the sequence 0.7, 0.77, 0.777, \u2026\u2026. , is<\/a><\/p>\n

If \\((10)^9\\) + \\(2(11)^1(10)^8\\) + \\(3(11)^2(10)^7\\) + \u2026\u2026 + \\(10(11)^9\\) = \\(K(10)^9\\), then k is equal to<\/a><\/p>\n\n\n

\n
Next – Sum of Harmonic Progression | HP Series<\/a><\/div>\n<\/div>\n\n\n\n
\n
Previous – Formula for Sum of AP Series | Properties of AP<\/a><\/div>\n<\/div>\n","protected":false},"excerpt":{"rendered":"

Here you will learn what is geometric progression (gp) and sum of gp series formula and properties of gp. Let’s begin – Sum of GP Series Formula G.P. is a sequence of non zero numbers each of the succeeding term is equal to the preceding term multiplied by a constant. Thus in GP the ratio …<\/p>\n

Sum of GP Series Formula | Properties of GP<\/span> Read More »<\/a><\/p>\n","protected":false},"author":1,"featured_media":0,"comment_status":"open","ping_status":"closed","sticky":false,"template":"","format":"standard","meta":{"site-sidebar-layout":"default","site-content-layout":"default","ast-global-header-display":"","ast-main-header-display":"","ast-hfb-above-header-display":"","ast-hfb-below-header-display":"","ast-hfb-mobile-header-display":"","site-post-title":"","ast-breadcrumbs-content":"","ast-featured-img":"","footer-sml-layout":"","theme-transparent-header-meta":"default","adv-header-id-meta":"","stick-header-meta":"","header-above-stick-meta":"","header-main-stick-meta":"","header-below-stick-meta":""},"categories":[15],"tags":[137,133,138,135,142,139,140],"yoast_head":"\nSum of GP Series Formula | Properties of GP - Mathemerize<\/title>\n<meta name=\"description\" content=\"In this post you will learn what is geometric progression (gp) and sum of gp series formula and properties of gp.\" \/>\n<meta name=\"robots\" content=\"index, follow, max-snippet:-1, max-image-preview:large, max-video-preview:-1\" \/>\n<link rel=\"canonical\" href=\"https:\/\/mathemerize.com\/sum-of-gp-series-formula\/\" \/>\n<meta property=\"og:locale\" content=\"en_US\" \/>\n<meta property=\"og:type\" content=\"article\" \/>\n<meta property=\"og:title\" content=\"Sum of GP Series Formula | Properties of GP - Mathemerize\" \/>\n<meta property=\"og:description\" content=\"In this post you will learn what is geometric progression (gp) and sum of gp series formula and properties of gp.\" \/>\n<meta property=\"og:url\" content=\"https:\/\/mathemerize.com\/sum-of-gp-series-formula\/\" \/>\n<meta property=\"og:site_name\" content=\"Mathemerize\" \/>\n<meta property=\"article:published_time\" content=\"2021-08-13T20:55:02+00:00\" \/>\n<meta property=\"article:modified_time\" content=\"2021-11-17T12:13:43+00:00\" \/>\n<meta name=\"author\" content=\"mathemerize\" \/>\n<meta name=\"twitter:card\" content=\"summary_large_image\" \/>\n<meta name=\"twitter:label1\" content=\"Written by\" \/>\n\t<meta name=\"twitter:data1\" content=\"mathemerize\" \/>\n\t<meta name=\"twitter:label2\" content=\"Est. reading time\" \/>\n\t<meta name=\"twitter:data2\" content=\"3 minutes\" \/>\n<script type=\"application\/ld+json\" class=\"yoast-schema-graph\">{\"@context\":\"https:\/\/schema.org\",\"@graph\":[{\"@type\":\"Article\",\"@id\":\"https:\/\/mathemerize.com\/sum-of-gp-series-formula\/#article\",\"isPartOf\":{\"@id\":\"https:\/\/mathemerize.com\/sum-of-gp-series-formula\/\"},\"author\":{\"name\":\"mathemerize\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df\"},\"headline\":\"Sum of GP Series Formula | Properties of GP\",\"datePublished\":\"2021-08-13T20:55:02+00:00\",\"dateModified\":\"2021-11-17T12:13:43+00:00\",\"mainEntityOfPage\":{\"@id\":\"https:\/\/mathemerize.com\/sum-of-gp-series-formula\/\"},\"wordCount\":565,\"commentCount\":0,\"publisher\":{\"@id\":\"https:\/\/mathemerize.com\/#organization\"},\"keywords\":[\"Formula for Geometric Progression\",\"Geometric progression\",\"gp formula class 11\",\"gp series\",\"nth term of gp\",\"Sum of GP Series Formula\",\"sum of n terms of gp\"],\"articleSection\":[\"Sequences & Series\"],\"inLanguage\":\"en-US\",\"potentialAction\":[{\"@type\":\"CommentAction\",\"name\":\"Comment\",\"target\":[\"https:\/\/mathemerize.com\/sum-of-gp-series-formula\/#respond\"]}]},{\"@type\":\"WebPage\",\"@id\":\"https:\/\/mathemerize.com\/sum-of-gp-series-formula\/\",\"url\":\"https:\/\/mathemerize.com\/sum-of-gp-series-formula\/\",\"name\":\"Sum of GP Series Formula | Properties of GP - Mathemerize\",\"isPartOf\":{\"@id\":\"https:\/\/mathemerize.com\/#website\"},\"datePublished\":\"2021-08-13T20:55:02+00:00\",\"dateModified\":\"2021-11-17T12:13:43+00:00\",\"description\":\"In this post you will learn what is geometric progression (gp) and sum of gp series formula and properties of gp.\",\"breadcrumb\":{\"@id\":\"https:\/\/mathemerize.com\/sum-of-gp-series-formula\/#breadcrumb\"},\"inLanguage\":\"en-US\",\"potentialAction\":[{\"@type\":\"ReadAction\",\"target\":[\"https:\/\/mathemerize.com\/sum-of-gp-series-formula\/\"]}]},{\"@type\":\"BreadcrumbList\",\"@id\":\"https:\/\/mathemerize.com\/sum-of-gp-series-formula\/#breadcrumb\",\"itemListElement\":[{\"@type\":\"ListItem\",\"position\":1,\"name\":\"Home\",\"item\":\"https:\/\/mathemerize.com\/\"},{\"@type\":\"ListItem\",\"position\":2,\"name\":\"Sum of GP Series Formula | Properties of GP\"}]},{\"@type\":\"WebSite\",\"@id\":\"https:\/\/mathemerize.com\/#website\",\"url\":\"https:\/\/mathemerize.com\/\",\"name\":\"Mathemerize\",\"description\":\"Maths Tutorials - Study Math Online\",\"publisher\":{\"@id\":\"https:\/\/mathemerize.com\/#organization\"},\"potentialAction\":[{\"@type\":\"SearchAction\",\"target\":{\"@type\":\"EntryPoint\",\"urlTemplate\":\"https:\/\/mathemerize.com\/?s={search_term_string}\"},\"query-input\":\"required name=search_term_string\"}],\"inLanguage\":\"en-US\"},{\"@type\":\"Organization\",\"@id\":\"https:\/\/mathemerize.com\/#organization\",\"name\":\"Mathemerize\",\"url\":\"https:\/\/mathemerize.com\/\",\"logo\":{\"@type\":\"ImageObject\",\"inLanguage\":\"en-US\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/\",\"url\":\"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1\",\"contentUrl\":\"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1\",\"width\":140,\"height\":96,\"caption\":\"Mathemerize\"},\"image\":{\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/\"},\"sameAs\":[\"https:\/\/www.instagram.com\/mathemerize\/\"]},{\"@type\":\"Person\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df\",\"name\":\"mathemerize\",\"image\":{\"@type\":\"ImageObject\",\"inLanguage\":\"en-US\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/person\/image\/\",\"url\":\"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g\",\"contentUrl\":\"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g\",\"caption\":\"mathemerize\"},\"sameAs\":[\"https:\/\/mathemerize.com\"],\"url\":\"https:\/\/mathemerize.com\/author\/mathemerize\/\"}]}<\/script>\n<!-- \/ Yoast SEO plugin. -->","yoast_head_json":{"title":"Sum of GP Series Formula | Properties of GP - Mathemerize","description":"In this post you will learn what is geometric progression (gp) and sum of gp series formula and properties of gp.","robots":{"index":"index","follow":"follow","max-snippet":"max-snippet:-1","max-image-preview":"max-image-preview:large","max-video-preview":"max-video-preview:-1"},"canonical":"https:\/\/mathemerize.com\/sum-of-gp-series-formula\/","og_locale":"en_US","og_type":"article","og_title":"Sum of GP Series Formula | Properties of GP - Mathemerize","og_description":"In this post you will learn what is geometric progression (gp) and sum of gp series formula and properties of gp.","og_url":"https:\/\/mathemerize.com\/sum-of-gp-series-formula\/","og_site_name":"Mathemerize","article_published_time":"2021-08-13T20:55:02+00:00","article_modified_time":"2021-11-17T12:13:43+00:00","author":"mathemerize","twitter_card":"summary_large_image","twitter_misc":{"Written by":"mathemerize","Est. reading time":"3 minutes"},"schema":{"@context":"https:\/\/schema.org","@graph":[{"@type":"Article","@id":"https:\/\/mathemerize.com\/sum-of-gp-series-formula\/#article","isPartOf":{"@id":"https:\/\/mathemerize.com\/sum-of-gp-series-formula\/"},"author":{"name":"mathemerize","@id":"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df"},"headline":"Sum of GP Series Formula | Properties of GP","datePublished":"2021-08-13T20:55:02+00:00","dateModified":"2021-11-17T12:13:43+00:00","mainEntityOfPage":{"@id":"https:\/\/mathemerize.com\/sum-of-gp-series-formula\/"},"wordCount":565,"commentCount":0,"publisher":{"@id":"https:\/\/mathemerize.com\/#organization"},"keywords":["Formula for Geometric Progression","Geometric progression","gp formula class 11","gp series","nth term of gp","Sum of GP Series Formula","sum of n terms of gp"],"articleSection":["Sequences & Series"],"inLanguage":"en-US","potentialAction":[{"@type":"CommentAction","name":"Comment","target":["https:\/\/mathemerize.com\/sum-of-gp-series-formula\/#respond"]}]},{"@type":"WebPage","@id":"https:\/\/mathemerize.com\/sum-of-gp-series-formula\/","url":"https:\/\/mathemerize.com\/sum-of-gp-series-formula\/","name":"Sum of GP Series Formula | Properties of GP - Mathemerize","isPartOf":{"@id":"https:\/\/mathemerize.com\/#website"},"datePublished":"2021-08-13T20:55:02+00:00","dateModified":"2021-11-17T12:13:43+00:00","description":"In this post you will learn what is geometric progression (gp) and sum of gp series formula and properties of gp.","breadcrumb":{"@id":"https:\/\/mathemerize.com\/sum-of-gp-series-formula\/#breadcrumb"},"inLanguage":"en-US","potentialAction":[{"@type":"ReadAction","target":["https:\/\/mathemerize.com\/sum-of-gp-series-formula\/"]}]},{"@type":"BreadcrumbList","@id":"https:\/\/mathemerize.com\/sum-of-gp-series-formula\/#breadcrumb","itemListElement":[{"@type":"ListItem","position":1,"name":"Home","item":"https:\/\/mathemerize.com\/"},{"@type":"ListItem","position":2,"name":"Sum of GP Series Formula | Properties of GP"}]},{"@type":"WebSite","@id":"https:\/\/mathemerize.com\/#website","url":"https:\/\/mathemerize.com\/","name":"Mathemerize","description":"Maths Tutorials - Study Math Online","publisher":{"@id":"https:\/\/mathemerize.com\/#organization"},"potentialAction":[{"@type":"SearchAction","target":{"@type":"EntryPoint","urlTemplate":"https:\/\/mathemerize.com\/?s={search_term_string}"},"query-input":"required name=search_term_string"}],"inLanguage":"en-US"},{"@type":"Organization","@id":"https:\/\/mathemerize.com\/#organization","name":"Mathemerize","url":"https:\/\/mathemerize.com\/","logo":{"@type":"ImageObject","inLanguage":"en-US","@id":"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/","url":"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1","contentUrl":"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1","width":140,"height":96,"caption":"Mathemerize"},"image":{"@id":"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/"},"sameAs":["https:\/\/www.instagram.com\/mathemerize\/"]},{"@type":"Person","@id":"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df","name":"mathemerize","image":{"@type":"ImageObject","inLanguage":"en-US","@id":"https:\/\/mathemerize.com\/#\/schema\/person\/image\/","url":"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g","contentUrl":"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g","caption":"mathemerize"},"sameAs":["https:\/\/mathemerize.com"],"url":"https:\/\/mathemerize.com\/author\/mathemerize\/"}]}},"jetpack_featured_media_url":"","_links":{"self":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts\/4018"}],"collection":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/users\/1"}],"replies":[{"embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/comments?post=4018"}],"version-history":[{"count":11,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts\/4018\/revisions"}],"predecessor-version":[{"id":8250,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts\/4018\/revisions\/8250"}],"wp:attachment":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/media?parent=4018"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/categories?post=4018"},{"taxonomy":"post_tag","embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/tags?post=4018"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}