{"id":4036,"date":"2021-08-15T10:43:55","date_gmt":"2021-08-15T10:43:55","guid":{"rendered":"https:\/\/mathemerize.com\/?p=4036"},"modified":"2021-11-26T16:44:54","modified_gmt":"2021-11-26T11:14:54","slug":"properties-of-logarithms","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/properties-of-logarithms\/","title":{"rendered":"What are the Properties of Logarithms"},"content":{"rendered":"

Here you will learn what are the properties of logarithms and fundamental identities of logarithm with examples.<\/p>\n

Let’s begin –<\/p>\n

Every positive real number N can be expressed in exponential form as \\(a^x\\) = N where ‘a’ is also a positive real number different than unity and is called the base and ‘x’ is called an exponent.<\/p>\n

We can write the relation \\(a^x\\) = N in logarithmic form as \\(log_aN\\) = x. Hence \\(a^x\\) = N <=> \\(log_aN\\) = x. Hence logarithm of a number to some base is the exponent by which the base must be raised in order to get that number.<\/p>\n

\\(log_aN\\) is defined only when<\/p>\n

\n

(i) N > 0<\/p>\n

(ii) a > 0<\/p>\n

(iii) \\(a\\neq1\\)<\/p>\n<\/blockquote>\n

Properties of Logarithms<\/h2>\n

If m, n are arbitrary positive numbers where a>0,\\(a\\neq1\\) and x is any real number, then-<\/p>\n

\n

(a)\u00a0 \\(log_a mn\\) = \\(log_a m\\) + \\(log_a n\\)<\/p>\n

(b)\u00a0 \\(log_a\\)\\(m\\over n\\) = \\(log_a m\\) – \\(log_a n\\)<\/p>\n

(c)\u00a0 \\(log_a\\)\\(m^x\\) = x\\(log_a m\\)<\/p>\n<\/blockquote>\n\n\n

Example : <\/span> If \\(a^2\\) + \\(b^2\\) = 23ab, then show that \\(log (a + b)\\over 5\\)= \\(1\\over 2\\)(log a + log b).<\/p>\n

Solution : <\/span>\\(a^2\\) + \\(b^2\\) = \\((a+b)^2\\) – 2ab = 23ab
=> \\((a+b)^2\\) = 25ab
=> a+b = 5\\(\\sqrt{ab}\\)

L.H.S. = \\(log(a+b)\\over 5\\) = \\(log(5 \\sqrt{ab}) \\over 5\\) = \\(1 \\over 2\\)log ab = \\(1 \\over 2\\)(log a + log b) = R.H.S.

<\/p>\n\n\n

Fundamental Identities<\/h2>\n

Using the basic definition of logarithm we have 2 important deductions:<\/p>\n

\n

(a)  \\(log_NN\\) = 1   i.e  logarithm of a number to the same base is 1.<\/p>\n

(b)  \\(log_N\\)\\(1\\over N\\) = -1   i.e  logarithm of a number to the base as its reciprocal is -1.<\/p>\n<\/blockquote>\n

Note :<\/strong><\/p>\n

\n

N = \\((a)^{\\log_a N}\\)     e.g. \\(2^{\\log_2 7}\\) = 7<\/p>\n<\/blockquote>\n\n\n

Example : <\/span> If \\(log_4m\\) = 3,then find the value of m.<\/p>\n

Solution : <\/span>\\(log_4m=3\\) => \\(m=4^3\\) => \\(m=64\\).

<\/p>\n\n\n

Hope you learnt what are the properties of logarithms and fundamental identities of logarithm. To learn more practice more questions and get ahead in competition. Good Luck!<\/p>\n\n\n

\n
Next – Logs Change of Base Formula – Base Changing Theorem<\/a><\/div>\n<\/div>\n\n\n\n
<\/div>\n","protected":false},"excerpt":{"rendered":"

Here you will learn what are the properties of logarithms and fundamental identities of logarithm with examples. Let’s begin – Every positive real number N can be expressed in exponential form as \\(a^x\\) = N where ‘a’ is also a positive real number different than unity and is called the base and ‘x’ is called …<\/p>\n

What are the Properties of Logarithms<\/span> Read More »<\/a><\/p>\n","protected":false},"author":1,"featured_media":0,"comment_status":"open","ping_status":"closed","sticky":false,"template":"","format":"standard","meta":{"site-sidebar-layout":"default","site-content-layout":"default","ast-global-header-display":"","ast-main-header-display":"","ast-hfb-above-header-display":"","ast-hfb-below-header-display":"","ast-hfb-mobile-header-display":"","site-post-title":"","ast-breadcrumbs-content":"","ast-featured-img":"","footer-sml-layout":"","theme-transparent-header-meta":"default","adv-header-id-meta":"","stick-header-meta":"","header-above-stick-meta":"","header-main-stick-meta":"","header-below-stick-meta":""},"categories":[13],"tags":[458,457],"yoast_head":"\nWhat are the Properties of Logarithms - Mathemerize<\/title>\n<meta name=\"description\" content=\"In this post you will learn what are the properties of logarithms and fundamental identities of logarithm with examples.\" \/>\n<meta name=\"robots\" content=\"index, follow, max-snippet:-1, max-image-preview:large, max-video-preview:-1\" \/>\n<link rel=\"canonical\" href=\"https:\/\/mathemerize.com\/properties-of-logarithms\/\" \/>\n<meta property=\"og:locale\" content=\"en_US\" \/>\n<meta property=\"og:type\" content=\"article\" \/>\n<meta property=\"og:title\" content=\"What are the Properties of Logarithms - Mathemerize\" \/>\n<meta property=\"og:description\" content=\"In this post you will learn what are the properties of logarithms and fundamental identities of logarithm with examples.\" \/>\n<meta property=\"og:url\" content=\"https:\/\/mathemerize.com\/properties-of-logarithms\/\" \/>\n<meta property=\"og:site_name\" content=\"Mathemerize\" \/>\n<meta property=\"article:published_time\" content=\"2021-08-15T10:43:55+00:00\" \/>\n<meta property=\"article:modified_time\" content=\"2021-11-26T11:14:54+00:00\" \/>\n<meta name=\"author\" content=\"mathemerize\" \/>\n<meta name=\"twitter:card\" content=\"summary_large_image\" \/>\n<meta name=\"twitter:label1\" content=\"Written by\" \/>\n\t<meta name=\"twitter:data1\" content=\"mathemerize\" \/>\n\t<meta name=\"twitter:label2\" content=\"Est. reading time\" \/>\n\t<meta name=\"twitter:data2\" content=\"2 minutes\" \/>\n<script type=\"application\/ld+json\" class=\"yoast-schema-graph\">{\"@context\":\"https:\/\/schema.org\",\"@graph\":[{\"@type\":\"Article\",\"@id\":\"https:\/\/mathemerize.com\/properties-of-logarithms\/#article\",\"isPartOf\":{\"@id\":\"https:\/\/mathemerize.com\/properties-of-logarithms\/\"},\"author\":{\"name\":\"mathemerize\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df\"},\"headline\":\"What are the Properties of Logarithms\",\"datePublished\":\"2021-08-15T10:43:55+00:00\",\"dateModified\":\"2021-11-26T11:14:54+00:00\",\"mainEntityOfPage\":{\"@id\":\"https:\/\/mathemerize.com\/properties-of-logarithms\/\"},\"wordCount\":357,\"commentCount\":0,\"publisher\":{\"@id\":\"https:\/\/mathemerize.com\/#organization\"},\"keywords\":[\"logarithmic identities\",\"Properties of Logarithms\"],\"articleSection\":[\"Logarithm\"],\"inLanguage\":\"en-US\",\"potentialAction\":[{\"@type\":\"CommentAction\",\"name\":\"Comment\",\"target\":[\"https:\/\/mathemerize.com\/properties-of-logarithms\/#respond\"]}]},{\"@type\":\"WebPage\",\"@id\":\"https:\/\/mathemerize.com\/properties-of-logarithms\/\",\"url\":\"https:\/\/mathemerize.com\/properties-of-logarithms\/\",\"name\":\"What are the Properties of Logarithms - Mathemerize\",\"isPartOf\":{\"@id\":\"https:\/\/mathemerize.com\/#website\"},\"datePublished\":\"2021-08-15T10:43:55+00:00\",\"dateModified\":\"2021-11-26T11:14:54+00:00\",\"description\":\"In this post you will learn what are the properties of logarithms and fundamental identities of logarithm with examples.\",\"breadcrumb\":{\"@id\":\"https:\/\/mathemerize.com\/properties-of-logarithms\/#breadcrumb\"},\"inLanguage\":\"en-US\",\"potentialAction\":[{\"@type\":\"ReadAction\",\"target\":[\"https:\/\/mathemerize.com\/properties-of-logarithms\/\"]}]},{\"@type\":\"BreadcrumbList\",\"@id\":\"https:\/\/mathemerize.com\/properties-of-logarithms\/#breadcrumb\",\"itemListElement\":[{\"@type\":\"ListItem\",\"position\":1,\"name\":\"Home\",\"item\":\"https:\/\/mathemerize.com\/\"},{\"@type\":\"ListItem\",\"position\":2,\"name\":\"What are the Properties of Logarithms\"}]},{\"@type\":\"WebSite\",\"@id\":\"https:\/\/mathemerize.com\/#website\",\"url\":\"https:\/\/mathemerize.com\/\",\"name\":\"Mathemerize\",\"description\":\"Maths Tutorials - Study Math Online\",\"publisher\":{\"@id\":\"https:\/\/mathemerize.com\/#organization\"},\"potentialAction\":[{\"@type\":\"SearchAction\",\"target\":{\"@type\":\"EntryPoint\",\"urlTemplate\":\"https:\/\/mathemerize.com\/?s={search_term_string}\"},\"query-input\":\"required name=search_term_string\"}],\"inLanguage\":\"en-US\"},{\"@type\":\"Organization\",\"@id\":\"https:\/\/mathemerize.com\/#organization\",\"name\":\"Mathemerize\",\"url\":\"https:\/\/mathemerize.com\/\",\"logo\":{\"@type\":\"ImageObject\",\"inLanguage\":\"en-US\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/\",\"url\":\"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1\",\"contentUrl\":\"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1\",\"width\":140,\"height\":96,\"caption\":\"Mathemerize\"},\"image\":{\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/\"},\"sameAs\":[\"https:\/\/www.instagram.com\/mathemerize\/\"]},{\"@type\":\"Person\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df\",\"name\":\"mathemerize\",\"image\":{\"@type\":\"ImageObject\",\"inLanguage\":\"en-US\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/person\/image\/\",\"url\":\"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g\",\"contentUrl\":\"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g\",\"caption\":\"mathemerize\"},\"sameAs\":[\"https:\/\/mathemerize.com\"],\"url\":\"https:\/\/mathemerize.com\/author\/mathemerize\/\"}]}<\/script>\n<!-- \/ Yoast SEO plugin. -->","yoast_head_json":{"title":"What are the Properties of Logarithms - Mathemerize","description":"In this post you will learn what are the properties of logarithms and fundamental identities of logarithm with examples.","robots":{"index":"index","follow":"follow","max-snippet":"max-snippet:-1","max-image-preview":"max-image-preview:large","max-video-preview":"max-video-preview:-1"},"canonical":"https:\/\/mathemerize.com\/properties-of-logarithms\/","og_locale":"en_US","og_type":"article","og_title":"What are the Properties of Logarithms - Mathemerize","og_description":"In this post you will learn what are the properties of logarithms and fundamental identities of logarithm with examples.","og_url":"https:\/\/mathemerize.com\/properties-of-logarithms\/","og_site_name":"Mathemerize","article_published_time":"2021-08-15T10:43:55+00:00","article_modified_time":"2021-11-26T11:14:54+00:00","author":"mathemerize","twitter_card":"summary_large_image","twitter_misc":{"Written by":"mathemerize","Est. reading time":"2 minutes"},"schema":{"@context":"https:\/\/schema.org","@graph":[{"@type":"Article","@id":"https:\/\/mathemerize.com\/properties-of-logarithms\/#article","isPartOf":{"@id":"https:\/\/mathemerize.com\/properties-of-logarithms\/"},"author":{"name":"mathemerize","@id":"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df"},"headline":"What are the Properties of Logarithms","datePublished":"2021-08-15T10:43:55+00:00","dateModified":"2021-11-26T11:14:54+00:00","mainEntityOfPage":{"@id":"https:\/\/mathemerize.com\/properties-of-logarithms\/"},"wordCount":357,"commentCount":0,"publisher":{"@id":"https:\/\/mathemerize.com\/#organization"},"keywords":["logarithmic identities","Properties of Logarithms"],"articleSection":["Logarithm"],"inLanguage":"en-US","potentialAction":[{"@type":"CommentAction","name":"Comment","target":["https:\/\/mathemerize.com\/properties-of-logarithms\/#respond"]}]},{"@type":"WebPage","@id":"https:\/\/mathemerize.com\/properties-of-logarithms\/","url":"https:\/\/mathemerize.com\/properties-of-logarithms\/","name":"What are the Properties of Logarithms - Mathemerize","isPartOf":{"@id":"https:\/\/mathemerize.com\/#website"},"datePublished":"2021-08-15T10:43:55+00:00","dateModified":"2021-11-26T11:14:54+00:00","description":"In this post you will learn what are the properties of logarithms and fundamental identities of logarithm with examples.","breadcrumb":{"@id":"https:\/\/mathemerize.com\/properties-of-logarithms\/#breadcrumb"},"inLanguage":"en-US","potentialAction":[{"@type":"ReadAction","target":["https:\/\/mathemerize.com\/properties-of-logarithms\/"]}]},{"@type":"BreadcrumbList","@id":"https:\/\/mathemerize.com\/properties-of-logarithms\/#breadcrumb","itemListElement":[{"@type":"ListItem","position":1,"name":"Home","item":"https:\/\/mathemerize.com\/"},{"@type":"ListItem","position":2,"name":"What are the Properties of Logarithms"}]},{"@type":"WebSite","@id":"https:\/\/mathemerize.com\/#website","url":"https:\/\/mathemerize.com\/","name":"Mathemerize","description":"Maths Tutorials - Study Math Online","publisher":{"@id":"https:\/\/mathemerize.com\/#organization"},"potentialAction":[{"@type":"SearchAction","target":{"@type":"EntryPoint","urlTemplate":"https:\/\/mathemerize.com\/?s={search_term_string}"},"query-input":"required name=search_term_string"}],"inLanguage":"en-US"},{"@type":"Organization","@id":"https:\/\/mathemerize.com\/#organization","name":"Mathemerize","url":"https:\/\/mathemerize.com\/","logo":{"@type":"ImageObject","inLanguage":"en-US","@id":"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/","url":"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1","contentUrl":"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1","width":140,"height":96,"caption":"Mathemerize"},"image":{"@id":"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/"},"sameAs":["https:\/\/www.instagram.com\/mathemerize\/"]},{"@type":"Person","@id":"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df","name":"mathemerize","image":{"@type":"ImageObject","inLanguage":"en-US","@id":"https:\/\/mathemerize.com\/#\/schema\/person\/image\/","url":"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g","contentUrl":"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g","caption":"mathemerize"},"sameAs":["https:\/\/mathemerize.com"],"url":"https:\/\/mathemerize.com\/author\/mathemerize\/"}]}},"jetpack_featured_media_url":"","_links":{"self":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts\/4036"}],"collection":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/users\/1"}],"replies":[{"embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/comments?post=4036"}],"version-history":[{"count":6,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts\/4036\/revisions"}],"predecessor-version":[{"id":8669,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts\/4036\/revisions\/8669"}],"wp:attachment":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/media?parent=4036"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/categories?post=4036"},{"taxonomy":"post_tag","embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/tags?post=4036"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}