{"id":4494,"date":"2021-08-20T05:25:17","date_gmt":"2021-08-20T05:25:17","guid":{"rendered":"https:\/\/mathemerize.com\/?p=4494"},"modified":"2021-11-17T17:47:23","modified_gmt":"2021-11-17T12:17:23","slug":"formula-for-arithmetic-progression","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/formula-for-arithmetic-progression\/","title":{"rendered":"Formula for Arithmetic Progression (AP)"},"content":{"rendered":"

Here you you will learn what is arithmetic progression (AP) and formula for arithmetic progression.<\/p>\n

Let’s begin –<\/p>\n

Arithmetic Progression (AP)<\/h2>\n

A sequence is called an arithmetic progression if the difference of a term and the previous term is always same\u00a0 i.e.\u00a0<\/p>\n

\n

\\(a_{n+1}\\) – \\(a_n\\) = constant (=d) for all n \\(\\in\\) N<\/p>\n

The constant difference generally denoted by d is called the common difference.<\/p>\n<\/blockquote>\n

for example<\/span> : 1, 4, 7, 10 ….. is an AP whose first term is 1 and the common difference is equal to 4 – 1 = 3.<\/p>\n

Also Read<\/strong> : Formula for Geometric Progression (GP)<\/a><\/p>\n

Formula for Arithmetic Progression<\/h2>\n

(a) General term of an AP ( nth term of ap)<\/h3>\n

Let a be the first term and d be the common difference of an AP. Then its nth term or general term is a + (n – 1)d\u00a0<\/p>\n

\n

i.e.\u00a0 \u00a0\\(a_n\\) = a + (n – 1)d.<\/p>\n<\/blockquote>\n

(b) nth term of an AP from the end<\/h3>\n

Let a be the first term and d be the common difference of an AP having m terms. Then nth term from the end is \\((m – n + 1)^{th}\\) term from the beginning.<\/p>\n

\n

\\(\\therefore\\)\u00a0 nth term from the end\u00a0 = \\(a_{m-n+1}\\)<\/p>\n

= a + (m-n+1-1)d = a + (m-n)d<\/p>\n<\/blockquote>\n

Also nth term from the end = \\(a_m\\) + (n-1)(-d)<\/p>\n

[\\(\\because\\)\u00a0 \u00a0Taking \\(a_m\\) as the first term and the common difference equal to ‘-d’ ]<\/p>\n

(c) Sum to n terms of an AP<\/h3>\n

The sum \\(S_n\\) of n terms of an AP with first term ‘a’ and common difference ‘d’ is<\/p>\n

\n

\\(S_n\\) = \\(n\\over 2\\) [2a + (n-1)d]<\/p>\n

or,\u00a0 \\(S_n\\) = \\(n\\over 2\\) [a + l] ,\u00a0 where l = last term = a + (n-1)d<\/p>\n<\/blockquote>\n\n\n

Example : <\/span>Show that the sequence 9, 12, 15, 18, ……. is an AP. find its 16th term, general term sum of first 20 terms.<\/p>\n

Solution : <\/span>We have, (12 – 9) = (15 – 12) = (18 – 15) = 3. Therefore, the given sequence is an AP with the common difference 3.

\nfirst term = a = 9

\n\\(\\therefore\\) 16th term = \\(a_{16}\\) = a + (16-1)d

\n\\(\\implies\\) \\(a_{16}\\) = 9 + 15*3 = 54

\n\\(\\because\\) General term = nth term = \\(a_n\\) = a + (n-1)d

\n\\(\\therefore\\) \\(a_n\\) = 9 + (n-1)*3 = 3n + 6

\nNow, sum of first 20 terms = \\(S_{20}\\) = \\(20\\over 2\\) [2*9 + (20-1)3]

\n\\(S_{20}\\) = 10[18 + 19*3]

\n= 750
<\/p>\n\n\n


\n

Related Questions<\/h3>\n

If 100 times the 100th term of an AP with non-zero common difference equal to the 50 times its 50th term, then the 150th term of AP is<\/a><\/p>\n

If x, y and z are in AP and \\(tan^{-1}x\\), \\(tan^{-1}y\\) and \\(tan^{-1}z\\) are also in AP, then<\/a><\/p>\n\n\n

\n
Next – Formula for Sum of AP Series | Properties of AP<\/a><\/div>\n<\/div>\n","protected":false},"excerpt":{"rendered":"

Here you you will learn what is arithmetic progression (AP) and formula for arithmetic progression. Let’s begin – Arithmetic Progression (AP) A sequence is called an arithmetic progression if the difference of a term and the previous term is always same\u00a0 i.e.\u00a0 \\(a_{n+1}\\) – \\(a_n\\) = constant (=d) for all n \\(\\in\\) N The constant …<\/p>\n

Formula for Arithmetic Progression (AP)<\/span> Read More »<\/a><\/p>\n","protected":false},"author":1,"featured_media":0,"comment_status":"open","ping_status":"closed","sticky":false,"template":"","format":"standard","meta":{"site-sidebar-layout":"default","site-content-layout":"default","ast-global-header-display":"","ast-main-header-display":"","ast-hfb-above-header-display":"","ast-hfb-below-header-display":"","ast-hfb-mobile-header-display":"","site-post-title":"","ast-breadcrumbs-content":"","ast-featured-img":"","footer-sml-layout":"","theme-transparent-header-meta":"default","adv-header-id-meta":"","stick-header-meta":"","header-above-stick-meta":"","header-main-stick-meta":"","header-below-stick-meta":""},"categories":[15],"tags":[149,145,144,143,150,148,147,146],"yoast_head":"\nFormula for Arithmetic Progression (AP) - Mathemerize<\/title>\n<meta name=\"description\" content=\"In this post you will learn what is arithmetic progression (AP) and formula for arithmetic progression with examples.\" \/>\n<meta name=\"robots\" content=\"index, follow, max-snippet:-1, max-image-preview:large, max-video-preview:-1\" \/>\n<link rel=\"canonical\" href=\"https:\/\/mathemerize.com\/formula-for-arithmetic-progression\/\" \/>\n<meta property=\"og:locale\" content=\"en_US\" \/>\n<meta property=\"og:type\" content=\"article\" \/>\n<meta property=\"og:title\" content=\"Formula for Arithmetic Progression (AP) - Mathemerize\" \/>\n<meta property=\"og:description\" content=\"In this post you will learn what is arithmetic progression (AP) and formula for arithmetic progression with examples.\" \/>\n<meta property=\"og:url\" content=\"https:\/\/mathemerize.com\/formula-for-arithmetic-progression\/\" \/>\n<meta property=\"og:site_name\" content=\"Mathemerize\" \/>\n<meta property=\"article:published_time\" content=\"2021-08-20T05:25:17+00:00\" \/>\n<meta property=\"article:modified_time\" content=\"2021-11-17T12:17:23+00:00\" \/>\n<meta name=\"author\" content=\"mathemerize\" \/>\n<meta name=\"twitter:card\" content=\"summary_large_image\" \/>\n<meta name=\"twitter:label1\" content=\"Written by\" \/>\n\t<meta name=\"twitter:data1\" content=\"mathemerize\" \/>\n\t<meta name=\"twitter:label2\" content=\"Est. reading time\" \/>\n\t<meta name=\"twitter:data2\" content=\"2 minutes\" \/>\n<script type=\"application\/ld+json\" class=\"yoast-schema-graph\">{\"@context\":\"https:\/\/schema.org\",\"@graph\":[{\"@type\":\"Article\",\"@id\":\"https:\/\/mathemerize.com\/formula-for-arithmetic-progression\/#article\",\"isPartOf\":{\"@id\":\"https:\/\/mathemerize.com\/formula-for-arithmetic-progression\/\"},\"author\":{\"name\":\"mathemerize\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df\"},\"headline\":\"Formula for Arithmetic Progression (AP)\",\"datePublished\":\"2021-08-20T05:25:17+00:00\",\"dateModified\":\"2021-11-17T12:17:23+00:00\",\"mainEntityOfPage\":{\"@id\":\"https:\/\/mathemerize.com\/formula-for-arithmetic-progression\/\"},\"wordCount\":409,\"commentCount\":0,\"publisher\":{\"@id\":\"https:\/\/mathemerize.com\/#organization\"},\"keywords\":[\"ap series\",\"arithmetic progression\",\"arithmetic progression formula\",\"Formula for Arithmetic Progression\",\"nth term of ap\",\"sum of ap formula\",\"sum of ap series\",\"sum of n terms of ap formula\"],\"articleSection\":[\"Sequences & Series\"],\"inLanguage\":\"en-US\",\"potentialAction\":[{\"@type\":\"CommentAction\",\"name\":\"Comment\",\"target\":[\"https:\/\/mathemerize.com\/formula-for-arithmetic-progression\/#respond\"]}]},{\"@type\":\"WebPage\",\"@id\":\"https:\/\/mathemerize.com\/formula-for-arithmetic-progression\/\",\"url\":\"https:\/\/mathemerize.com\/formula-for-arithmetic-progression\/\",\"name\":\"Formula for Arithmetic Progression (AP) - Mathemerize\",\"isPartOf\":{\"@id\":\"https:\/\/mathemerize.com\/#website\"},\"datePublished\":\"2021-08-20T05:25:17+00:00\",\"dateModified\":\"2021-11-17T12:17:23+00:00\",\"description\":\"In this post you will learn what is arithmetic progression (AP) and formula for arithmetic progression with examples.\",\"breadcrumb\":{\"@id\":\"https:\/\/mathemerize.com\/formula-for-arithmetic-progression\/#breadcrumb\"},\"inLanguage\":\"en-US\",\"potentialAction\":[{\"@type\":\"ReadAction\",\"target\":[\"https:\/\/mathemerize.com\/formula-for-arithmetic-progression\/\"]}]},{\"@type\":\"BreadcrumbList\",\"@id\":\"https:\/\/mathemerize.com\/formula-for-arithmetic-progression\/#breadcrumb\",\"itemListElement\":[{\"@type\":\"ListItem\",\"position\":1,\"name\":\"Home\",\"item\":\"https:\/\/mathemerize.com\/\"},{\"@type\":\"ListItem\",\"position\":2,\"name\":\"Formula for Arithmetic Progression (AP)\"}]},{\"@type\":\"WebSite\",\"@id\":\"https:\/\/mathemerize.com\/#website\",\"url\":\"https:\/\/mathemerize.com\/\",\"name\":\"Mathemerize\",\"description\":\"Maths Tutorials - Study Math Online\",\"publisher\":{\"@id\":\"https:\/\/mathemerize.com\/#organization\"},\"potentialAction\":[{\"@type\":\"SearchAction\",\"target\":{\"@type\":\"EntryPoint\",\"urlTemplate\":\"https:\/\/mathemerize.com\/?s={search_term_string}\"},\"query-input\":\"required name=search_term_string\"}],\"inLanguage\":\"en-US\"},{\"@type\":\"Organization\",\"@id\":\"https:\/\/mathemerize.com\/#organization\",\"name\":\"Mathemerize\",\"url\":\"https:\/\/mathemerize.com\/\",\"logo\":{\"@type\":\"ImageObject\",\"inLanguage\":\"en-US\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/\",\"url\":\"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1\",\"contentUrl\":\"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1\",\"width\":140,\"height\":96,\"caption\":\"Mathemerize\"},\"image\":{\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/\"},\"sameAs\":[\"https:\/\/www.instagram.com\/mathemerize\/\"]},{\"@type\":\"Person\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df\",\"name\":\"mathemerize\",\"image\":{\"@type\":\"ImageObject\",\"inLanguage\":\"en-US\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/person\/image\/\",\"url\":\"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g\",\"contentUrl\":\"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g\",\"caption\":\"mathemerize\"},\"sameAs\":[\"https:\/\/mathemerize.com\"],\"url\":\"https:\/\/mathemerize.com\/author\/mathemerize\/\"}]}<\/script>\n<!-- \/ Yoast SEO plugin. -->","yoast_head_json":{"title":"Formula for Arithmetic Progression (AP) - Mathemerize","description":"In this post you will learn what is arithmetic progression (AP) and formula for arithmetic progression with examples.","robots":{"index":"index","follow":"follow","max-snippet":"max-snippet:-1","max-image-preview":"max-image-preview:large","max-video-preview":"max-video-preview:-1"},"canonical":"https:\/\/mathemerize.com\/formula-for-arithmetic-progression\/","og_locale":"en_US","og_type":"article","og_title":"Formula for Arithmetic Progression (AP) - Mathemerize","og_description":"In this post you will learn what is arithmetic progression (AP) and formula for arithmetic progression with examples.","og_url":"https:\/\/mathemerize.com\/formula-for-arithmetic-progression\/","og_site_name":"Mathemerize","article_published_time":"2021-08-20T05:25:17+00:00","article_modified_time":"2021-11-17T12:17:23+00:00","author":"mathemerize","twitter_card":"summary_large_image","twitter_misc":{"Written by":"mathemerize","Est. reading time":"2 minutes"},"schema":{"@context":"https:\/\/schema.org","@graph":[{"@type":"Article","@id":"https:\/\/mathemerize.com\/formula-for-arithmetic-progression\/#article","isPartOf":{"@id":"https:\/\/mathemerize.com\/formula-for-arithmetic-progression\/"},"author":{"name":"mathemerize","@id":"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df"},"headline":"Formula for Arithmetic Progression (AP)","datePublished":"2021-08-20T05:25:17+00:00","dateModified":"2021-11-17T12:17:23+00:00","mainEntityOfPage":{"@id":"https:\/\/mathemerize.com\/formula-for-arithmetic-progression\/"},"wordCount":409,"commentCount":0,"publisher":{"@id":"https:\/\/mathemerize.com\/#organization"},"keywords":["ap series","arithmetic progression","arithmetic progression formula","Formula for Arithmetic Progression","nth term of ap","sum of ap formula","sum of ap series","sum of n terms of ap formula"],"articleSection":["Sequences & Series"],"inLanguage":"en-US","potentialAction":[{"@type":"CommentAction","name":"Comment","target":["https:\/\/mathemerize.com\/formula-for-arithmetic-progression\/#respond"]}]},{"@type":"WebPage","@id":"https:\/\/mathemerize.com\/formula-for-arithmetic-progression\/","url":"https:\/\/mathemerize.com\/formula-for-arithmetic-progression\/","name":"Formula for Arithmetic Progression (AP) - Mathemerize","isPartOf":{"@id":"https:\/\/mathemerize.com\/#website"},"datePublished":"2021-08-20T05:25:17+00:00","dateModified":"2021-11-17T12:17:23+00:00","description":"In this post you will learn what is arithmetic progression (AP) and formula for arithmetic progression with examples.","breadcrumb":{"@id":"https:\/\/mathemerize.com\/formula-for-arithmetic-progression\/#breadcrumb"},"inLanguage":"en-US","potentialAction":[{"@type":"ReadAction","target":["https:\/\/mathemerize.com\/formula-for-arithmetic-progression\/"]}]},{"@type":"BreadcrumbList","@id":"https:\/\/mathemerize.com\/formula-for-arithmetic-progression\/#breadcrumb","itemListElement":[{"@type":"ListItem","position":1,"name":"Home","item":"https:\/\/mathemerize.com\/"},{"@type":"ListItem","position":2,"name":"Formula for Arithmetic Progression (AP)"}]},{"@type":"WebSite","@id":"https:\/\/mathemerize.com\/#website","url":"https:\/\/mathemerize.com\/","name":"Mathemerize","description":"Maths Tutorials - Study Math Online","publisher":{"@id":"https:\/\/mathemerize.com\/#organization"},"potentialAction":[{"@type":"SearchAction","target":{"@type":"EntryPoint","urlTemplate":"https:\/\/mathemerize.com\/?s={search_term_string}"},"query-input":"required name=search_term_string"}],"inLanguage":"en-US"},{"@type":"Organization","@id":"https:\/\/mathemerize.com\/#organization","name":"Mathemerize","url":"https:\/\/mathemerize.com\/","logo":{"@type":"ImageObject","inLanguage":"en-US","@id":"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/","url":"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1","contentUrl":"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1","width":140,"height":96,"caption":"Mathemerize"},"image":{"@id":"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/"},"sameAs":["https:\/\/www.instagram.com\/mathemerize\/"]},{"@type":"Person","@id":"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df","name":"mathemerize","image":{"@type":"ImageObject","inLanguage":"en-US","@id":"https:\/\/mathemerize.com\/#\/schema\/person\/image\/","url":"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g","contentUrl":"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g","caption":"mathemerize"},"sameAs":["https:\/\/mathemerize.com"],"url":"https:\/\/mathemerize.com\/author\/mathemerize\/"}]}},"jetpack_featured_media_url":"","_links":{"self":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts\/4494"}],"collection":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/users\/1"}],"replies":[{"embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/comments?post=4494"}],"version-history":[{"count":10,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts\/4494\/revisions"}],"predecessor-version":[{"id":8252,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts\/4494\/revisions\/8252"}],"wp:attachment":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/media?parent=4494"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/categories?post=4494"},{"taxonomy":"post_tag","embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/tags?post=4494"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}