{"id":4770,"date":"2021-08-25T15:29:01","date_gmt":"2021-08-25T15:29:01","guid":{"rendered":"https:\/\/mathemerize.com\/?p=4770"},"modified":"2022-01-16T16:57:41","modified_gmt":"2022-01-16T11:27:41","slug":"method-of-difference-sequences-series","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/method-of-difference-sequences-series\/","title":{"rendered":"Method of Difference – Sequences and Series"},"content":{"rendered":"

Here you will learn method of difference in sequences and series with examples.<\/p>\n

Let’s begin –<\/p>\n

Method of Difference<\/h2>\n

Some times the \\(n^{th}\\) term of a sequence or a series can not be determined by the method, we have discussed earlier. So we compute the difference between the successive terms of given sequence for obtained the \\(n^{th}\\) terms.<\/p>\n

If \\(T_1\\), \\(T_2\\), \\(T_3\\),…….,\\(T_n\\) are the terms of a sequence then some times the terms \\(T_2\\) – \\(T_1\\),
\\(T_3\\) – \\(T_1\\)…… constitute an AP\/GP. \\(n^{th}\\) term of the series is determined & the sum to n terms of the sequence can easily be obtained.<\/p>\n

Case 1 :<\/strong><\/p>\n

(a) If difference series are in A.P., then<\/p>\n

Let \\(T_n\\) = \\(an^2\\) + bn + c, where a, b, c are constant<\/p>\n

(b) If difference of difference series are in A.P.<\/p>\n

Let \\(T_n\\) = \\(an^3\\) + \\(bn^2\\) + cn + d, where a, b, c, d are constant<\/p>\n

Case 2 :<\/strong><\/p>\n

(a) If difference are in G.P., then<\/p>\n

Let \\(T_n\\) = \\(ar^n\\) + b, where r is common ratio & a, b are constant<\/p>\n

(b) If difference of difference are in G.P., then<\/p>\n

Let \\(T_n\\) = \\(ar^n\\) + bn + c, where r is common ratio & a, b, c are constant<\/p>\n

Determine constant by putting n = 1, 2, 3 ……. n and putting the value of \\(T_1\\), \\(T_2\\), \\(T_3\\)……. and sum of series \\(S_n\\) = \\({\\sum}T_n\\)<\/p>\n\n\n

Example : <\/span>Find the sum to n terms of the series : 3 + 15 + 35 + 63 + …..<\/p>\n

Solution : <\/span>The difference between the successive terms are 15 – 3 = 12, 35 – 15 = 20, 63 – 35 = 28, …. Clearly,these differences are in AP.

\nLet \\(T_n\\) be the nth term and \\(S_n\\) denote the sum to n terms of the given series

\nThen, \\(S_n\\) = 3 + 15 + 35 + 63 + ….. + \\(T_{n-1}\\) + \\(T_n\\) ……(i)

\nAlso, \\(S_n\\) =     3 + 15 + 35 + ….. + \\(T_{n-1}\\) + \\(T_n\\) ……(ii)

\nSubtracting (ii) from (i), we get

\n0 = 3 + [12 + 20 + 28 + …… + \\(T_{n-1}\\) + \\(T_n\\)] – \\(T_n\\)

\n\\(\\implies\\) \\(T_n\\) = 3 + \\((n-1)\\over 2\\){2*12+(n-1-1)*8} = 3 + (n-1){12+4n-8}

\n\\(\\implies\\) \\(T_n\\) = 3 + (n-1)(4n+4) = \\(4n^2 – 1\\)

\n\\(\\therefore\\) \\(S_n\\) = \\(\\sum_{k=1}^{n}\\) \\(T_k\\) = \\(\\sum_{k=1}^{n}\\) (\\(4k^2 – 1\\)) = 4\\(\\sum_{k=1}^{n}\\)\\(k^2\\) – \\(\\sum_{k=1}^{n}\\) 1

\n\\(\\implies\\) \\(S_n\\) = 4{\\(n(n+1)(2n+1)\\over 6\\)} – n = \\(n\\over 3\\) (\\(4n^2 + 6n – 1\\))

<\/p>\n\n\n


\n

Related Questions<\/h3>\n

Find the sum of n terms of the series 3 + 7 + 14 + 24 + 37 + \u2026\u2026.<\/a><\/p>\n

Find the sum of n terms of the series 1.3.5 + 3.5.7 + 5.7.9 + \u2026\u2026<\/a><\/p>\n\n\n

\n
Previous – Sum of GP to Infinity \u2013 Example & Proof<\/a><\/div>\n<\/div>\n","protected":false},"excerpt":{"rendered":"

Here you will learn method of difference in sequences and series with examples. Let’s begin – Method of Difference Some times the \\(n^{th}\\) term of a sequence or a series can not be determined by the method, we have discussed earlier. So we compute the difference between the successive terms of given sequence for obtained …<\/p>\n

Method of Difference – Sequences and Series<\/span> Read More »<\/a><\/p>\n","protected":false},"author":1,"featured_media":0,"comment_status":"open","ping_status":"closed","sticky":false,"template":"","format":"standard","meta":{"site-sidebar-layout":"default","site-content-layout":"default","ast-global-header-display":"","ast-main-header-display":"","ast-hfb-above-header-display":"","ast-hfb-below-header-display":"","ast-hfb-mobile-header-display":"","site-post-title":"","ast-breadcrumbs-content":"","ast-featured-img":"","footer-sml-layout":"","theme-transparent-header-meta":"default","adv-header-id-meta":"","stick-header-meta":"","header-above-stick-meta":"","header-main-stick-meta":"","header-below-stick-meta":""},"categories":[15],"tags":[125,129,127,126],"yoast_head":"\nMethod of Difference - Sequences and Series - Mathemerize<\/title>\n<meta name=\"description\" content=\"In this post you will learn method of difference in sequences and series with examples.\" \/>\n<meta name=\"robots\" content=\"index, follow, max-snippet:-1, max-image-preview:large, max-video-preview:-1\" \/>\n<link rel=\"canonical\" href=\"https:\/\/mathemerize.com\/method-of-difference-sequences-series\/\" \/>\n<meta property=\"og:locale\" content=\"en_US\" \/>\n<meta property=\"og:type\" content=\"article\" \/>\n<meta property=\"og:title\" content=\"Method of Difference - Sequences and Series - Mathemerize\" \/>\n<meta property=\"og:description\" content=\"In this post you will learn method of difference in sequences and series with examples.\" \/>\n<meta property=\"og:url\" content=\"https:\/\/mathemerize.com\/method-of-difference-sequences-series\/\" \/>\n<meta property=\"og:site_name\" content=\"Mathemerize\" \/>\n<meta property=\"article:published_time\" content=\"2021-08-25T15:29:01+00:00\" \/>\n<meta property=\"article:modified_time\" content=\"2022-01-16T11:27:41+00:00\" \/>\n<meta name=\"author\" content=\"mathemerize\" \/>\n<meta name=\"twitter:card\" content=\"summary_large_image\" \/>\n<meta name=\"twitter:label1\" content=\"Written by\" \/>\n\t<meta name=\"twitter:data1\" content=\"mathemerize\" \/>\n\t<meta name=\"twitter:label2\" content=\"Est. reading time\" \/>\n\t<meta name=\"twitter:data2\" content=\"2 minutes\" \/>\n<script type=\"application\/ld+json\" class=\"yoast-schema-graph\">{\"@context\":\"https:\/\/schema.org\",\"@graph\":[{\"@type\":\"Article\",\"@id\":\"https:\/\/mathemerize.com\/method-of-difference-sequences-series\/#article\",\"isPartOf\":{\"@id\":\"https:\/\/mathemerize.com\/method-of-difference-sequences-series\/\"},\"author\":{\"name\":\"mathemerize\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df\"},\"headline\":\"Method of Difference – Sequences and Series\",\"datePublished\":\"2021-08-25T15:29:01+00:00\",\"dateModified\":\"2022-01-16T11:27:41+00:00\",\"mainEntityOfPage\":{\"@id\":\"https:\/\/mathemerize.com\/method-of-difference-sequences-series\/\"},\"wordCount\":396,\"commentCount\":0,\"publisher\":{\"@id\":\"https:\/\/mathemerize.com\/#organization\"},\"keywords\":[\"Method of Difference\",\"method of difference class 11\",\"method of difference sequence and series\",\"method of difference series\"],\"articleSection\":[\"Sequences & Series\"],\"inLanguage\":\"en-US\",\"potentialAction\":[{\"@type\":\"CommentAction\",\"name\":\"Comment\",\"target\":[\"https:\/\/mathemerize.com\/method-of-difference-sequences-series\/#respond\"]}]},{\"@type\":\"WebPage\",\"@id\":\"https:\/\/mathemerize.com\/method-of-difference-sequences-series\/\",\"url\":\"https:\/\/mathemerize.com\/method-of-difference-sequences-series\/\",\"name\":\"Method of Difference - Sequences and Series - Mathemerize\",\"isPartOf\":{\"@id\":\"https:\/\/mathemerize.com\/#website\"},\"datePublished\":\"2021-08-25T15:29:01+00:00\",\"dateModified\":\"2022-01-16T11:27:41+00:00\",\"description\":\"In this post you will learn method of difference in sequences and series with examples.\",\"breadcrumb\":{\"@id\":\"https:\/\/mathemerize.com\/method-of-difference-sequences-series\/#breadcrumb\"},\"inLanguage\":\"en-US\",\"potentialAction\":[{\"@type\":\"ReadAction\",\"target\":[\"https:\/\/mathemerize.com\/method-of-difference-sequences-series\/\"]}]},{\"@type\":\"BreadcrumbList\",\"@id\":\"https:\/\/mathemerize.com\/method-of-difference-sequences-series\/#breadcrumb\",\"itemListElement\":[{\"@type\":\"ListItem\",\"position\":1,\"name\":\"Home\",\"item\":\"https:\/\/mathemerize.com\/\"},{\"@type\":\"ListItem\",\"position\":2,\"name\":\"Method of Difference – Sequences and Series\"}]},{\"@type\":\"WebSite\",\"@id\":\"https:\/\/mathemerize.com\/#website\",\"url\":\"https:\/\/mathemerize.com\/\",\"name\":\"Mathemerize\",\"description\":\"Maths Tutorials - Study Math Online\",\"publisher\":{\"@id\":\"https:\/\/mathemerize.com\/#organization\"},\"potentialAction\":[{\"@type\":\"SearchAction\",\"target\":{\"@type\":\"EntryPoint\",\"urlTemplate\":\"https:\/\/mathemerize.com\/?s={search_term_string}\"},\"query-input\":\"required name=search_term_string\"}],\"inLanguage\":\"en-US\"},{\"@type\":\"Organization\",\"@id\":\"https:\/\/mathemerize.com\/#organization\",\"name\":\"Mathemerize\",\"url\":\"https:\/\/mathemerize.com\/\",\"logo\":{\"@type\":\"ImageObject\",\"inLanguage\":\"en-US\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/\",\"url\":\"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1\",\"contentUrl\":\"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1\",\"width\":140,\"height\":96,\"caption\":\"Mathemerize\"},\"image\":{\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/\"},\"sameAs\":[\"https:\/\/www.instagram.com\/mathemerize\/\"]},{\"@type\":\"Person\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df\",\"name\":\"mathemerize\",\"image\":{\"@type\":\"ImageObject\",\"inLanguage\":\"en-US\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/person\/image\/\",\"url\":\"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g\",\"contentUrl\":\"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g\",\"caption\":\"mathemerize\"},\"sameAs\":[\"https:\/\/mathemerize.com\"],\"url\":\"https:\/\/mathemerize.com\/author\/mathemerize\/\"}]}<\/script>\n<!-- \/ Yoast SEO plugin. -->","yoast_head_json":{"title":"Method of Difference - Sequences and Series - Mathemerize","description":"In this post you will learn method of difference in sequences and series with examples.","robots":{"index":"index","follow":"follow","max-snippet":"max-snippet:-1","max-image-preview":"max-image-preview:large","max-video-preview":"max-video-preview:-1"},"canonical":"https:\/\/mathemerize.com\/method-of-difference-sequences-series\/","og_locale":"en_US","og_type":"article","og_title":"Method of Difference - Sequences and Series - Mathemerize","og_description":"In this post you will learn method of difference in sequences and series with examples.","og_url":"https:\/\/mathemerize.com\/method-of-difference-sequences-series\/","og_site_name":"Mathemerize","article_published_time":"2021-08-25T15:29:01+00:00","article_modified_time":"2022-01-16T11:27:41+00:00","author":"mathemerize","twitter_card":"summary_large_image","twitter_misc":{"Written by":"mathemerize","Est. reading time":"2 minutes"},"schema":{"@context":"https:\/\/schema.org","@graph":[{"@type":"Article","@id":"https:\/\/mathemerize.com\/method-of-difference-sequences-series\/#article","isPartOf":{"@id":"https:\/\/mathemerize.com\/method-of-difference-sequences-series\/"},"author":{"name":"mathemerize","@id":"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df"},"headline":"Method of Difference – Sequences and Series","datePublished":"2021-08-25T15:29:01+00:00","dateModified":"2022-01-16T11:27:41+00:00","mainEntityOfPage":{"@id":"https:\/\/mathemerize.com\/method-of-difference-sequences-series\/"},"wordCount":396,"commentCount":0,"publisher":{"@id":"https:\/\/mathemerize.com\/#organization"},"keywords":["Method of Difference","method of difference class 11","method of difference sequence and series","method of difference series"],"articleSection":["Sequences & Series"],"inLanguage":"en-US","potentialAction":[{"@type":"CommentAction","name":"Comment","target":["https:\/\/mathemerize.com\/method-of-difference-sequences-series\/#respond"]}]},{"@type":"WebPage","@id":"https:\/\/mathemerize.com\/method-of-difference-sequences-series\/","url":"https:\/\/mathemerize.com\/method-of-difference-sequences-series\/","name":"Method of Difference - Sequences and Series - Mathemerize","isPartOf":{"@id":"https:\/\/mathemerize.com\/#website"},"datePublished":"2021-08-25T15:29:01+00:00","dateModified":"2022-01-16T11:27:41+00:00","description":"In this post you will learn method of difference in sequences and series with examples.","breadcrumb":{"@id":"https:\/\/mathemerize.com\/method-of-difference-sequences-series\/#breadcrumb"},"inLanguage":"en-US","potentialAction":[{"@type":"ReadAction","target":["https:\/\/mathemerize.com\/method-of-difference-sequences-series\/"]}]},{"@type":"BreadcrumbList","@id":"https:\/\/mathemerize.com\/method-of-difference-sequences-series\/#breadcrumb","itemListElement":[{"@type":"ListItem","position":1,"name":"Home","item":"https:\/\/mathemerize.com\/"},{"@type":"ListItem","position":2,"name":"Method of Difference – Sequences and Series"}]},{"@type":"WebSite","@id":"https:\/\/mathemerize.com\/#website","url":"https:\/\/mathemerize.com\/","name":"Mathemerize","description":"Maths Tutorials - Study Math Online","publisher":{"@id":"https:\/\/mathemerize.com\/#organization"},"potentialAction":[{"@type":"SearchAction","target":{"@type":"EntryPoint","urlTemplate":"https:\/\/mathemerize.com\/?s={search_term_string}"},"query-input":"required name=search_term_string"}],"inLanguage":"en-US"},{"@type":"Organization","@id":"https:\/\/mathemerize.com\/#organization","name":"Mathemerize","url":"https:\/\/mathemerize.com\/","logo":{"@type":"ImageObject","inLanguage":"en-US","@id":"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/","url":"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1","contentUrl":"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1","width":140,"height":96,"caption":"Mathemerize"},"image":{"@id":"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/"},"sameAs":["https:\/\/www.instagram.com\/mathemerize\/"]},{"@type":"Person","@id":"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df","name":"mathemerize","image":{"@type":"ImageObject","inLanguage":"en-US","@id":"https:\/\/mathemerize.com\/#\/schema\/person\/image\/","url":"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g","contentUrl":"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g","caption":"mathemerize"},"sameAs":["https:\/\/mathemerize.com"],"url":"https:\/\/mathemerize.com\/author\/mathemerize\/"}]}},"jetpack_featured_media_url":"","_links":{"self":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts\/4770"}],"collection":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/users\/1"}],"replies":[{"embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/comments?post=4770"}],"version-history":[{"count":4,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts\/4770\/revisions"}],"predecessor-version":[{"id":9549,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts\/4770\/revisions\/9549"}],"wp:attachment":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/media?parent=4770"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/categories?post=4770"},{"taxonomy":"post_tag","embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/tags?post=4770"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}