{"id":4878,"date":"2021-08-31T17:47:18","date_gmt":"2021-08-31T17:47:18","guid":{"rendered":"https:\/\/mathemerize.com\/?p=4878"},"modified":"2021-09-11T18:41:08","modified_gmt":"2021-09-11T13:11:08","slug":"equality-of-matrices","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/equality-of-matrices\/","title":{"rendered":"Equality of Matrices Definition with Examples"},"content":{"rendered":"
Here you will learn equality of matrices definition with examples.<\/p>\n
Let’s begin –<\/p>\n
Definition :\u00a0<\/strong>Two matrice A = \\([a_{ij}]_{m\\times n}\\) and B = \\([b_{ij}]_{r\\times s}\\) are equal if<\/p>\n (i) m = r i.e. the number of rows in A equals the number of rows in B.<\/p>\n (ii) n = s i.e the number of columns in A equals the number of columns in B.<\/p>\n (iii) \\(a_{ij}\\) = \\(b_{ij}\\) for i = 1, 2, ……. , m and j = 1, 2, ,,,,, , n.<\/p>\n<\/blockquote>\n If two matrices A and B are equal, we write A = B, otherwise we write A \\(\\ne\\) B.<\/p>\n The matrices A = \\(\\begin{bmatrix} 3 & 2 & 1 \\\\ x &\u00a0 y & 5 \\\\ 1 & -1 &\u00a0 4\u00a0 \\end{bmatrix}\\) and B = \\(\\begin{bmatrix} 3 & 2 & 1 \\\\ -1 &\u00a0 0 & 5 \\\\ -1 & -1 &\u00a0 z\u00a0 \\end{bmatrix}\\) are equal if x = -1, y = 0 and z = 4.<\/p>\n Matrices \\(\\begin{bmatrix} 0 & 0\u00a0 \\\\ 0 &\u00a0 0\u00a0 \\end{bmatrix}\\) and \\(\\begin{bmatrix} 0 & 0\u00a0 & 0 \\\\ 0 &\u00a0 0 & 0\u00a0 \\end{bmatrix}\\) are not equal, because their orders are not same.<\/p>\n\n\n Example : <\/span>Find the value of x, y, z and w which satisfy the matrix equation, \\(\\begin{bmatrix} x – y & 2x + z \\\\ 2x – y & 3z+ w \\end{bmatrix}\\) = \\(\\begin{bmatrix} -1 & 5 \\\\ 0 & 13 \\end{bmatrix}\\)<\/p>\n Solution : <\/span>Since the corresponding elements of two equal matrices are equal. Therefore,\n
\\(\\begin{bmatrix} x – y & 2x + z \\\\ 2x – y & 3z+ w \\end{bmatrix}\\) = \\(\\begin{bmatrix} -1 & 5 \\\\ 0 & 13 \\end{bmatrix}\\)
\n\\(\\implies\\) x – y = -1, 2x + z = 5, 2x – y = 0, 3z + w = 13
\nSolving the equation x – y = -1 and 2x- y = 0 as simultaneous linear equations, we get x = 1 and y = 2.
\nNow, putting x = 1 in 2x + z = 5, we get z = 3. Substituting z = 3 in 3z + w = 13, we obtain w = 4
\nThus, x = 1, y = 2, z = 3 and w = 4
<\/p>\n\n\n\n