{"id":5065,"date":"2021-09-05T16:11:01","date_gmt":"2021-09-05T10:41:01","guid":{"rendered":"https:\/\/mathemerize.com\/?p=5065"},"modified":"2021-11-21T16:13:16","modified_gmt":"2021-11-21T10:43:16","slug":"minors-and-cofactors-of-a-matrix","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/minors-and-cofactors-of-a-matrix\/","title":{"rendered":"Minors and Cofactors of a Matrix (3×3 and 2×2) with Examples"},"content":{"rendered":"
Here you will learn how to find minors and cofactors of a matrix of order 3×3 and 2×2 with examples.<\/p>\n
Let’s begin –<\/p>\n
Let A = \\([a_{ij}]\\) be a square matrix of order n. The minor \\(M_{ij}\\) of \\(a_{ij}\\) in A is the determinant of the square sub-matrix of order (n – 1) obtained by leaving \\(i^{ith}\\) row and \\(j^{ith}\\) column of A.<\/p>\n
Example<\/span><\/strong> : if A = \\(\\begin{bmatrix} 4 & -7 \\\\ -3 & 2 \\end{bmatrix}\\), then<\/p>\n \\(M_{11}\\) = Minor of\u00a0 \\(a_{11}\\) = 2,\u00a0 \\(M_{12}\\) = Minor of\u00a0 \\(a_{12}\\) = -3,\u00a0<\/p>\n \\(M_{21}\\) = Minor of\u00a0 \\(a_{21}\\) = -7,\u00a0 \\(M_{22}\\) = Minor of\u00a0 \\(a_{22}\\) = 4<\/p>\n If A = \\(\\begin{bmatrix} 1 & 2 & 3 \\\\ -3 & 2 & -1 \\\\ 2 & -4 & 3 \\end{bmatrix}\\), then<\/p>\n \\(M_{11}\\) = Minor of\u00a0 \\(a_{11}\\)<\/p>\n \\(\\implies\\) \\(M_{11}\\) = Determinant of the 2×2 square sub matrix obtained by leaving first row and first column of A<\/p>\n \\(\\implies\\) \\(M_{11}\\) = \\(\\begin{vmatrix} 2 & -1 \\\\ -4 & 3 \\end{vmatrix}\\)<\/p>\n Similarly, we obtain<\/p>\n \\(M_{12}\\) = Minor of\u00a0 \\(a_{12}\\) = \\(\\begin{vmatrix} -3 & -1 \\\\\u00a0 2 & 3 \\end{vmatrix}\\) = -7<\/p>\n \\(M_{13}\\) = Minor of\u00a0 \\(a_{13}\\) = \\(\\begin{vmatrix} -3 & 2 \\\\ 2 & -4 \\end{vmatrix}\\) = 8<\/p>\n \\(M_{21}\\) = Minor of\u00a0 \\(a_{21}\\) = \\(\\begin{vmatrix} 2 & 3 \\\\ -4 & 3 \\end{vmatrix}\\) = 18<\/p>\n \\(M_{22}\\) = Minor of\u00a0 \\(a_{22}\\) = \\(\\begin{vmatrix} 1 & 3 \\\\ 2 & 3 \\end{vmatrix}\\) = -3\u00a0 \u00a0 etc.<\/p>\n Let A = \\([a_{ij}]\\) be a square matrix of order n. The cofactor \\(C_{ij}\\) of \\(a_{ij}\\) in A is equal to \\((-1)^{i+j}\\) times the determinant of the sub-matrix of order (n – 1) obtained by leaving \\(i^{ith}\\) row and \\(j^{ith}\\) column of A.<\/p>\n It follows from this definition that<\/p>\n \\(C_{ij}\\) = Cofactor of \\(a_{ij}\\) in A = \\((-1)^{i+j}\\)\\(M_{ij}\\), where \\(M_{ij}\\) is minor of \\(a_{ij}\\) in A.<\/p>\n Thus we have<\/p>\n \\(C_{ij}\\) = \\(M_{ij}\\) if i + j\u00a0 is even<\/p>\n \\(C_{ij}\\) = \\(-M_{ij}\\) if i + j\u00a0 is odd<\/p>\n<\/blockquote>\n Example<\/span><\/strong> : if A = \\(\\begin{bmatrix} 4 & -7 \\\\ -3 & 2 \\end{bmatrix}\\), then<\/p>\n \\(C_{11}\\) = \\((-1)^{1+1}\\)\\(M_{11}\\) = \\(M_{11}\\)\u00a0 = 2, \\(C_{12}\\) = \\((-1)^{1+2}\\)\\(M_{12}\\) = -\\(M_{12}\\)\u00a0 = -(-3) = 3,<\/p>\n \\(C_{21}\\) = \\((-1)^{2+1}\\)\\(M_{21}\\) = \\(M_{21}\\)\u00a0 = -(-7) = 7, \\(C_{22}\\) = \\((-1)^{2+2}\\)\\(M_{22}\\) = \\(M_{22}\\)\u00a0 = 4<\/p>\n If A = \\(\\begin{bmatrix} 1 & 2 & 3 \\\\ -3 & 2 & -1 \\\\ 2 & -4 & 3 \\end{bmatrix}\\), then<\/p>\n \\(C_{11}\\) = \\((-1)^{1+1}\\)\\(M_{11}\\) = \\(M_{11}\\) = \\(\\begin{vmatrix} 2 & -1 \\\\ -4 & 3 \\end{vmatrix}\\) = 2<\/p>\n \\(C_{12}\\) = \\((-1)^{1+2}\\)\\(M_{12}\\) = -\\(M_{12}\\) = -\\(\\begin{vmatrix} -3 & -1 \\\\ 2 & 3 \\end{vmatrix}\\) = 7<\/p>\n \\(C_{13}\\) = \\((-1)^{1+3}\\)\\(M_{13}\\) = \\(M_{13}\\) = \\(\\begin{vmatrix} -3 & 2 \\\\ 2 & -4 \\end{vmatrix}\\) = 8<\/p>\n \\(C_{23}\\) = \\((-1)^{2+3}\\)\\(M_{23}\\) = -\\(M_{23}\\) = -\\(\\begin{vmatrix} 1 & 2 \\\\ 2 & -4 \\end{vmatrix}\\) = 8\u00a0 \u00a0 etc.<\/p>\n\n\nCofactor of Matrix (3×3 and 2×2)\u00a0<\/h3>\n
\n