{"id":5121,"date":"2021-09-08T18:15:52","date_gmt":"2021-09-08T12:45:52","guid":{"rendered":"https:\/\/mathemerize.com\/?p=5121"},"modified":"2022-09-16T02:06:40","modified_gmt":"2022-09-15T20:36:40","slug":"differentiation-formulas-class-12","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/differentiation-formulas-class-12\/","title":{"rendered":"Differentiation Formulas Class 12 – Calculus"},"content":{"rendered":"
Here you will learn what is derivative or differentiation and various differentiation formulas class 12.<\/p>\n
Let’s begin –<\/p>\n
Let f(x) be a differentiable or derivable function on [a, b]. Then,<\/p>\n
\\(lim_{h \\to 0}\\) \\(f(x + h) – f(x)\\over h\\)\u00a0 \u00a0or,\u00a0 \\(lim_{h \\to 0}\\) \\(f(x – h) – f(x)\\over -h\\)<\/p>\n
is called the derivative or differentiation<\/strong> of f(x) with respect to x and is denoted by<\/p>\n f'(x) or, \\(d\\over dx\\) (f(x))\u00a0 or,\u00a0 Df(x),\u00a0 where D = \\(d\\over dx\\)<\/p>\n Sometimes the derivative or differentiation of the function f(x) is called the differential coefficient of f(x). The process of finding the derivative of a function by using the above definition is called the differentiation from first principles or by ab-initio method or by delta method.<\/p>\n Following are derivatives or differentiation of some standard functions.<\/p>\n (i)<\/strong>\u00a0 \\(d\\over dx\\) \\(x^n\\) = \\(nx^{n-1}\\)<\/p>\n (ii)<\/strong>\u00a0 \\(d\\over dx\\)(a) = 0,\u00a0 \u00a0 \u00a0where a is constant.<\/p>\n (iii)<\/strong>\u00a0 \u00a0\\(d\\over dx\\)(x) = 1<\/p>\n (iv)<\/strong>\u00a0 \\(d\\over dx\\)(kx) = k,\u00a0 \u00a0 where k is constant<\/p>\n (i)<\/strong>\u00a0 \u00a0\\(d\\over dx\\) \\(e^x\\) = \\(e^x\\)<\/p>\n (ii)<\/strong>\u00a0 \\(d\\over dx\\) \\(a^x\\) = \\(a^xlog_e a\\)<\/p>\n (iii)<\/strong>\u00a0 \\(d\\over dx\\) \\(log_e x\\) = \\(1\\over x\\)<\/p>\n (iv)<\/strong>\u00a0 \\(d\\over dx\\) \\(log_a x\\) = \\(1\\over xlog_e a\\)<\/p>\n (i)<\/strong>\u00a0 \\(d\\over dx\\) (sin x) = cos x<\/p>\n (ii)<\/strong>\u00a0 \\(d\\over dx\\) (cos x) = – sin x<\/p>\n (iii)<\/strong>\u00a0 \\(d\\over dx\\) (tan x) = \\(sec^2 x\\)<\/p>\n (iv)<\/strong>\u00a0 \\(d\\over dx\\) (cot x) = \\(- cosec^2 x\\)<\/p>\n (vi)<\/strong>\u00a0 \\(d\\over dx\\) (sec x) = sec x tan x<\/p>\n (vi)<\/strong>\u00a0 \\(d\\over dx\\) (cosec x) = – cosec x cot x<\/p>\n (i)<\/strong>\u00a0 \\(d\\over dx\\) \\(sin^{-1} x\\) = \\(1\\over {\\sqrt{1 – x^2}}\\)<\/p>\n (ii)<\/strong>\u00a0 \\(d\\over dx\\) \\(cos^{-1} x\\) = – \\(1\\over {\\sqrt{1 – x^2}}\\)<\/p>\n (iii)<\/strong>\u00a0 \\(d\\over dx\\) \\(tan^{-1} x\\) = \\(1\\over {1 + x^2}\\)<\/p>\n (iv)<\/strong>\u00a0 \\(d\\over dx\\) \\(cot^{-1} x\\) = -\\(1\\over {1 + x^2}\\)<\/p>\n (v)<\/strong>\u00a0 \\(d\\over dx\\) \\(sec^{-1} x\\) = \\(1\\over {| x |\\sqrt{x^2 – 1}}\\)<\/p>\n (vi)<\/strong>\u00a0 \\(d\\over dx\\) \\(cosec^{-1} x\\) =\u00a0 – \\(1\\over {| x |\\sqrt{x^2 – 1}}\\)<\/p>\n (i)\u00a0 Product Rule<\/a><\/strong> – \\(d\\over dx\\) {f(x) g(x)} = \\(d\\over dx\\) (f(x)) g(x) + f(x). \\(d\\over dx\\) (g(x))<\/p>\nDifferentiation Formulas Class 12<\/h2>\n
Basic Differentiation Formulas<\/h3>\n
Differentiation of Logarithmic and Exponential Function Formulas<\/h3>\n
Trigonometric Function Differentiation Formulas Class 12<\/h3>\n
Inverse Trigonometric Function Differentiation Formulas<\/h3>\n
Differentiation Rules Class 12<\/h3>\n