{"id":5506,"date":"2021-09-15T17:03:32","date_gmt":"2021-09-15T11:33:32","guid":{"rendered":"https:\/\/mathemerize.com\/?p=5506"},"modified":"2021-11-22T19:30:50","modified_gmt":"2021-11-22T14:00:50","slug":"differentiation-of-exponential-function","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/differentiation-of-exponential-function\/","title":{"rendered":"Differentiation of Exponential Function"},"content":{"rendered":"
Here you will learn differentiation of exponential function by using first principle and its examples.<\/p>\n
Let’s begin –<\/p>\n
\nThe differentiation of \\(e^x\\) with respect to x is \\(e^x\\).<\/p>\n
i.e. \\(d\\over dx\\) \\(e^x\\) = \\(e^x\\)<\/p>\n<\/blockquote>\n
Proof Using first Principle :<\/strong><\/h4>\n
\nLet f(x) = \\(e^x\\). Then, f(x + h) = \\(e^{x + h}\\)<\/p>\n
\\(\\therefore\\)\u00a0 \u00a0\\(d\\over dx\\)(f(x)) = \\(lim_{h\\to 0}\\) \\(f(x + h) – f(x)\\over h\\)<\/p>\n
\\(d\\over dx\\)(f(x)) = \\(lim_{h\\to 0}\\) \\(e^{x + h} – e^x\\over h\\)<\/p>\n
\\(d\\over dx\\)(f(x)) = \\(lim_{h\\to 0}\\) \\(e^x.e^h – e^x\\over h\\)<\/p>\n
\\(d\\over dx\\)(f(x)) = \\(lim_{h\\to 0}\\) \\(e^x\\) (\\(e^h – 1\\over h\\))<\/p>\n
\\(\\implies\\) \\(d\\over dx\\)(f(x)) = \\(e^x\\)\u00a0 \\(lim_{h\\to 0}\\) (\\(e^h – 1\\over h\\))<\/p>\n
because, [\\(lim_{h\\to 0}\\)(\\(e^h – 1\\over h\\)) = 1]<\/p>\n
\\(\\implies\\) \\(d\\over dx\\)(f(x)) = \\(e^x\\) \\(\\times\\) 1 = \\(e^x\\)<\/p>\n
Hence, \\(d\\over dx\\) (\\(e^x\\)) = \\(e^x\\)<\/p>\n<\/blockquote>\n
Example<\/span><\/strong> : What is the differentiation of \\(e^{2x}\\) ?<\/p>\n
Solution<\/strong><\/span> : Let y\u00a0 = \\(e^{2x}\\)<\/p>\n
\\(d\\over dx\\) (y) = \\(d\\over dx\\) \\(e^{2x}\\)<\/p>\n
By using chain rule,<\/p>\n
\\(d\\over dx\\) (y) = 2\\(e^{2x}\\)<\/p>\n
Hence, \\(d\\over dx\\) (\\(e^{2x}\\)) = 2\\(e^{2x}\\)<\/p>\n
(2) Differentiation of \\(a^x\\) :<\/h3>\n
\nThe differentiation of \\(a^x\\) with respect to x is \\(a^x log_e a\\).<\/p>\n
i.e. \\(d\\over dx\\) \\(a^x\\) = \\(a^x log_e a\\)<\/p>\n<\/blockquote>\n
Proof Using first Principle :<\/strong><\/h4>\n
\nLet f(x) = \\(a^x\\). Then, f(x + h) = \\(a^{x + h}\\)<\/p>\n
\\(\\therefore\\)\u00a0 \u00a0\\(d\\over dx\\)(f(x)) = \\(lim_{h\\to 0}\\) \\(f(x + h) – f(x)\\over h\\)<\/p>\n
\\(d\\over dx\\)(f(x)) = \\(lim_{h\\to 0}\\) \\(a^{x + h} – a^x\\over h\\)<\/p>\n
\\(d\\over dx\\)(f(x)) = \\(lim_{h\\to 0}\\) \\(a^x.a^h – a^x\\over h\\)<\/p>\n
\\(d\\over dx\\)(f(x)) = \\(lim_{h\\to 0}\\) \\(a^x\\) (\\(a^h – 1\\over h\\))<\/p>\n
\\(\\implies\\) \\(d\\over dx\\)(f(x)) = \\(a^x\\)\u00a0 \\(lim_{h\\to 0}\\) (\\(a^h – 1\\over h\\))<\/p>\n
because, [\\(lim_{h\\to 0}\\)(\\(a^h – 1\\over h\\)) = \\(log_e a\\)]<\/p>\n
\\(\\implies\\) \\(d\\over dx\\)(f(x)) = \\(a^x\\) \\(\\times\\) \\(log_e a\\) = \\(a^x\\) \\(log_e a\\)<\/p>\n
Hence, \\(d\\over dx\\) (\\(a^x\\)) = \\(a^x\\) \\(log_e a\\)<\/p>\n<\/blockquote>\n
Example<\/span><\/strong> : What is the differentiation of \\(5^{x}\\) ?<\/p>\n
Solution<\/strong><\/span> : Let y\u00a0 = \\(5^{x}\\)<\/p>\n
\\(d\\over dx\\) (y) = \\(d\\over dx\\) \\(5^{x}\\)<\/p>\n
\\(d\\over dx\\) (y) = \\(5^x log_e 5\\)<\/p>\n
Hence, \\(d\\over dx\\) (\\(5^{x}\\)) = \\(5^x log_e 5\\)<\/p>\n
\nRelated Questions<\/h3>\n