{"id":5533,"date":"2021-09-16T20:39:14","date_gmt":"2021-09-16T15:09:14","guid":{"rendered":"https:\/\/mathemerize.com\/?p=5533"},"modified":"2021-11-22T16:30:09","modified_gmt":"2021-11-22T11:00:09","slug":"differentiation-of-sec-inverse-x","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/differentiation-of-sec-inverse-x\/","title":{"rendered":"Differentiation of sec inverse x"},"content":{"rendered":"
Here you will learn differentiation of sec inverse x or arcsecx x by using chain rule.<\/p>\n
Let’s begin –<\/p>\n
\nIf x \\(\\in\\) R – [-1, 1] . then the differentiation of \\(sec^{-1}x\\) with respect to x is \\(1\\over | x |\\sqrt{x^2 – 1}\\).<\/p>\n
i.e. \\(d\\over dx\\) \\(sec^{-1}x\\) = \\(1\\over | x |\\sqrt{x^2 – 1}\\).<\/p>\n<\/blockquote>\n
Proof using chain rule :<\/h2>\n
\nLet y = \\(sec^{-1}x\\). Then,<\/p>\n
\\(sec(sec^{-1}x)\\) = x<\/p>\n
\\(\\implies\\) sec y = x<\/p>\n
Differentiating both sides with respect to x, we get<\/p>\n
\\(d\\over dx\\)(sec y) = \\(d\\over dx\\)(x)<\/p>\n
\\(d\\over dx\\) (sec y) = 1<\/p>\n
By chain rule,<\/p>\n
sec y tan y \\(dy\\over dx\\) = 1<\/p>\n
\\(dy\\over dx\\) = \\(1\\over sec y tan y\\)<\/p>\n
\\(dy\\over dx\\) = \\(1\\over | sec y | | tan y |\\)<\/p>\n
\\(dy\\over dx\\) = \\(1\\over | sec y | \\sqrt{tan^2 y}\\)<\/p>\n
\\(\\implies\\) \\(dy\\over dx\\) = \\(1\\over | sec y | \\sqrt{sec^2 y – 1}\\)<\/p>\n
\\(\\implies\\) \\(d\\over dx\\) \\(sec^{-1}x\\) = \\(1\\over | x |\\sqrt{x^2 – 1}\\)<\/p>\n
Hence, the differentiation of \\(sec^{-1}x\\) with respect to x is \\(1\\over | x |\\sqrt{x^2 – 1}\\).<\/p>\n<\/blockquote>\n
Example<\/strong><\/span> : What is the differentiation of \\(sec^{-1} x^2\\) with respect to x ?<\/p>\n
Solution<\/strong><\/span> : Let y = \\(sec^{-1} x^2\\)<\/p>\n
Differentiating both sides with respect to x and using chain rule, we get<\/p>\n
\\(dy\\over dx\\) = \\(d\\over dx\\) (\\(sec^{-1} x^2\\))<\/p>\n
\\(dy\\over dx\\) = \\(1\\over | x^2 | \\sqrt{x^4 – 1}\\).(2x) = \\(2x\\over | x^2 | \\sqrt{x^4 – 1}\\)<\/p>\n
Hence, \\(d\\over dx\\) (\\(sec^{-1} x^2\\)) = \\(2x\\over | x^2 | \\sqrt{x^4 – 1}\\)<\/p>\n
Example<\/strong><\/span> : What is the differentiation of x + \\(sec^{-1} x\\) with respect to x ?<\/p>\n
Solution<\/strong><\/span> : Let y = x + \\(sec^{-1} x\\)<\/p>\n
Differentiating both sides with respect to x, we get<\/p>\n
\\(dy\\over dx\\) = \\(d\\over dx\\) (x) + \\(d\\over dx\\) (\\(sec^{-1} x\\))<\/p>\n
\\(dy\\over dx\\) = 1 + \\(1\\over | x | \\sqrt{x^2 – 1}\\)<\/p>\n
Hence, \\(d\\over dx\\) (x + \\(sec^{-1} x\\)) = 1 + \\(1\\over | x | \\sqrt{x^2 – 1}\\)<\/p>\n
\nRelated Questions<\/h3>\n
What is the Differentiation of tan inverse x ?<\/a><\/p>\n
What is the Differentiation of secx ?<\/a><\/p>\n
What is the Integration of Sec Inverse x and Cosec Inverse x ?<\/a><\/p>\n\n\n