{"id":5577,"date":"2021-09-21T17:03:35","date_gmt":"2021-09-21T11:33:35","guid":{"rendered":"https:\/\/mathemerize.com\/?p=5577"},"modified":"2021-11-15T16:09:49","modified_gmt":"2021-11-15T10:39:49","slug":"higher-order-derivatives-of-parametric-equations","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/higher-order-derivatives-of-parametric-equations\/","title":{"rendered":"Higher Order Derivatives of Parametric Equations"},"content":{"rendered":"
Here you will learn higher order derivatives of parametric equations with examples.<\/p>\n
Let’s begin –<\/p>\n
We know that the differentiation of parametric equations of type x = at and y = 2at is given by formula<\/p>\n
\n\\(dy\\over dx\\) = \\(dy\/dt\\over dx\/dt\\)<\/p>\n
where t is the parameter<\/p>\n<\/blockquote>\n
Now, by again differentiating the above equation we obtain 2nd order derivative given below:<\/p>\n
\n\\(d^2y\\over dx^2\\) = \\(d\\over dx\\)(\\(dy\\over dx\\))<\/p>\n<\/blockquote>\n
Example<\/strong><\/span> : find \\(d^2y\\over dx^2\\) , if x = \\(at^2\\) , y = 2at.<\/p>\n
Solution<\/strong><\/span> : We have, <\/p>\n
x = \\(at^2\\) , y = 2at.<\/p>\n
Differentiating both sides with respect to t,<\/p>\n
\\(\\implies\\) \\(dx\\over dt\\) = 2at and \\(dy\\over dt\\) = 2a …….(i)<\/p>\n
\\(\\therefore\\) \\(dy\\over dx\\) = \\(dy\/dt\\over dx\/dt\\) = \\(2a\\over 2at\\) = \\(1\\over t\\)<\/p>\n
Differentiating both sides with respect to x, we get<\/p>\n
\\(d^2y\\over dx^2\\) = \\(d\\over dx\\)(\\(1\\over t\\))<\/p>\n
\\(\\implies\\) \\(d^2y\\over dx^2\\) = \\(-1\\over t^2\\)\\(dt\\over dx\\)<\/p>\n
from (i), [\\(dx\\over dt\\) = 2at \\(\\therefore\\) \\(dt\\over dx\\) = \\(1\\over 2at\\)]<\/p>\n
\\(\\implies\\) \\(d^2y\\over dx^2\\) = -\\(1\\over 2at^3\\)<\/p>\n
Example<\/strong><\/span> : If x = \\(acos^3\\theta\\) , y = \\(asin^3\\theta\\) , find \\(d^2y\\over dx^2\\). Also find its value at \\(\\theta\\) = \\(\\pi\\over 6\\).<\/p>\n
Solution<\/strong><\/span> : We have, <\/p>\n
x = \\(acos^3\\theta\\) and y = \\(asin^3\\theta\\)<\/p>\n
Differentiating both sides with respect to \\(\\theta\\), <\/p>\n
\\(\\therefore\\) \\(dx\\over d\\theta\\) = \\(-3acos^2\\theta sin\\theta\\) and \\(dy\\over d\\theta\\) = \\(3asin^2\\theta cos\\theta\\) …….(i)<\/p>\n
So, \\(dy\\over dx\\) = \\(dy\/d\\theta\\over dx\/d\\theta\\) = \\(3asin^2\\theta cos\\theta\\over {-3acos^2\\theta sin\\theta}\\) = \\(-tan\\theta\\)<\/p>\n
Differentiating both sides with respect to x, we obtain<\/p>\n
\\(d^2y\\over dx^2\\) = \\(d\\over dx\\)(\\(-tan\\theta\\)) <\/p>\n
= \\(sec^2\\theta\\)\\(d\\theta\\over dx\\) <\/p>\n
from (i), [\\(dx\\over d\\theta\\) = \\(-3acos^2\\theta sin\\theta\\) \\(\\therefore\\) \\(d\\theta\\over dx\\) = \\(1\\over {-3acos^2\\theta sin\\theta}\\)]<\/p>\n
\\(d^2y\\over dx^2\\) = -\\(sec^2\\theta\\)\\(\\times\\)\\(1\\over {-3acos^2\\theta sin\\theta}\\)<\/p>\n
\\(\\implies\\) \\(d^2y\\over dx^2\\) = \\(1\\over 3a\\) \\(sec^4\\theta\\)\\(cosec\\theta\\)<\/p>\n
\\(\\therefore\\) At \\(\\theta\\) = \\(\\pi\\over 6\\) , \\(d^2y\\over dx^2\\) = \\(1\\over 3a\\) \\(sec^4{\\pi\\over 4}\\)\\(cosec{\\pi\\over 6}\\)<\/p>\n
= \\(1\\over 3a\\) \\(\\times\\) \\((2\\over \\sqrt{3})^4\\) \\(\\times\\) 2 = \\(32\\over 27a\\) <\/p>\n\n\n