{"id":5581,"date":"2021-09-21T18:34:20","date_gmt":"2021-09-21T13:04:20","guid":{"rendered":"https:\/\/mathemerize.com\/?p=5581"},"modified":"2021-11-15T00:14:07","modified_gmt":"2021-11-14T18:44:07","slug":"differentials-errors-and-approximations","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/differentials-errors-and-approximations\/","title":{"rendered":"Differentials Errors and Approximations"},"content":{"rendered":"

Here you will learn what is differentials errors and approximations with examples.<\/p>\n

Let’s begin –<\/p>\n

Differentials Errors and Approximations<\/h2>\n

In order to calculate the approximate value of a function, differentials may be used where the differential of a function is equal to its derivative multiplied by the differential of the independent variable,<\/p>\n

\n

In general dy = f'(x)dx or df(x) = f'(x)dx<\/p>\n

Or \\(\\Delta y\\) = \\(dy\\over dx\\) \\(\\Delta x\\)\u00a0<\/p>\n

Because [ f'(x) = \\(dy\\over dx\\) ]<\/p>\n<\/blockquote>\n

Absolute Error\u00a0<\/strong><\/h4>\n
\n

The error \\(\\Delta x\\) in x is called the absolute error in x.<\/p>\n<\/blockquote>\n

Relative Error\u00a0<\/strong><\/h4>\n
\n

If \\(\\Delta x\\) is an error in x, then \\(\\Delta x\\over x\\) is called the relative error in x<\/p>\n<\/blockquote>\n

Percentage Error\u00a0<\/strong><\/h4>\n
\n

If \\(\\Delta x\\) is an error in x, then \\({\\Delta x\\over x} \\times 100\\) is called the percentage error in x.<\/p>\n<\/blockquote>\n

Remark<\/strong> : Let y = f(x) be a function of x, and let \\(\\Delta x\\) be a small change in x. Let the corresponding change in y be \\(\\Delta y\\). Then,<\/p>\n

y + \\(\\Delta y\\) = \\(f(x + \\Delta x)\\)<\/p>\n

But, \\(\\Delta y\\) = \\(dy\\over dx\\) \\(\\Delta x\\) = f'(x) \\(\\Delta x\\) , approximately<\/p>\n

\\(\\therefore\\) \\(f(x + \\Delta x)\\) = y + \\(\\Delta y\\)<\/p>\n

\\(\\implies\\) \\(f(x + \\Delta x)\\) = y + f'(x) \\(\\Delta x\\) , approximately<\/p>\n

\\(\\implies\\) \\(f(x + \\Delta x)\\) = y + \\(dy\\over dx\\) \\(\\Delta x\\) , approximately<\/p>\n

Let x be the independent variable and y be the dependent variable connected by the relation y = f(x). We use the following algorithm to find an approximate change \\(\\Delta y\\) in y due to small change \\(\\Delta x\\) in x.<\/p>\n

Algorithm :<\/strong><\/p>\n

\n

1). Choose the initial value of the independent variable as x and the changed value as x + \\(\\Delta x\\).<\/p>\n

2). find \\(\\Delta x\\) and assume that dx = \\(\\Delta x\\).<\/p>\n

3). find \\(dy\\over dx\\) from the given relation y = f(x).<\/p>\n

4). find the value of \\(dy\\over dx\\) at (x, y).<\/p>\n

5). find dy by using the relation dy = \\(dy\\over dx\\)dx.<\/p>\n

6). Put \\(\\Delta y\\) = dy to obtain an approximate change in y.<\/p>\n<\/blockquote>\n

Example<\/strong><\/span> : If y = \\(x^4\\) – 10\u00a0 and x changes from 2 to 1.99, what is the approximate change in y ? Also, find the changed value of y.<\/p>\n

Solution<\/strong><\/span> : Let x\u00a0 = 2, x + \\(\\Delta x\\) = 1.99. Then, \\(\\Delta x\\) = 1.99 – 2 = -0.01<\/p>\n

Let dx = \\(\\Delta x\\)\u00a0 = -0.01<\/p>\n

We have,\u00a0<\/p>\n

y = \\(x^4\\) – 10<\/p>\n

\\(\\implies\\) \\(dy\\over dx\\) = \\(4x^3\\) \\(\\implies\\) \\(({dy\\over dx})_{x=2}\\) = \\(4(2)^3\\) = 32<\/p>\n

\\(\\therefore\\) dy = \\(dy\\over dx\\) dx<\/p>\n

\\(\\implies\\) dy = 32(-0.01) = -0.32<\/p>\n

\\(\\implies\\) \\(\\Delta y\\) = -0.32 approximately<\/p>\n

So, approximate change in y = -0.32<\/p>\n

When, x = 2, we have<\/p>\n

y = \\(2^4\\) – 10 = 6<\/p>\n

So, changed value of y = y + \\(\\Delta y\\) = 6 + (-0.32) = 5.68<\/p>\n


\n

Related Questions<\/h3>\n

If the radius of a sphere is measured as 9 cm with an error of 0.03 cm, then find the approximating error in calculating its volume.<\/a><\/p>\n

Find the approximate value of f(3.02), where f(x) = \\(3x^2 + 5x + 3\\).<\/a><\/p>\n\n\n

\n
Next – Mean Value Theorems Class 12<\/a><\/div>\n<\/div>\n\n\n\n
\n
Previous – Derivative as a Rate Measure Class 12<\/a><\/div>\n<\/div>\n","protected":false},"excerpt":{"rendered":"

Here you will learn what is differentials errors and approximations with examples. Let’s begin – Differentials Errors and Approximations In order to calculate the approximate value of a function, differentials may be used where the differential of a function is equal to its derivative multiplied by the differential of the independent variable, In general dy …<\/p>\n

Differentials Errors and Approximations<\/span> Read More »<\/a><\/p>\n","protected":false},"author":1,"featured_media":0,"comment_status":"open","ping_status":"closed","sticky":false,"template":"","format":"standard","meta":{"site-sidebar-layout":"default","site-content-layout":"default","ast-global-header-display":"","ast-main-header-display":"","ast-hfb-above-header-display":"","ast-hfb-below-header-display":"","ast-hfb-mobile-header-display":"","site-post-title":"","ast-breadcrumbs-content":"","ast-featured-img":"","footer-sml-layout":"","theme-transparent-header-meta":"default","adv-header-id-meta":"","stick-header-meta":"","header-above-stick-meta":"","header-main-stick-meta":"","header-below-stick-meta":""},"categories":[37],"tags":[76,116,114,115],"yoast_head":"\nDifferentials Errors and Approximations - Mathemerize<\/title>\n<meta name=\"description\" content=\"In this post you will learn what is differentials errors and approximations with examples.\" \/>\n<meta name=\"robots\" content=\"index, follow, max-snippet:-1, max-image-preview:large, max-video-preview:-1\" \/>\n<link rel=\"canonical\" href=\"https:\/\/mathemerize.com\/differentials-errors-and-approximations\/\" \/>\n<meta property=\"og:locale\" content=\"en_US\" \/>\n<meta property=\"og:type\" content=\"article\" \/>\n<meta property=\"og:title\" content=\"Differentials Errors and Approximations - Mathemerize\" \/>\n<meta property=\"og:description\" content=\"In this post you will learn what is differentials errors and approximations with examples.\" \/>\n<meta property=\"og:url\" content=\"https:\/\/mathemerize.com\/differentials-errors-and-approximations\/\" \/>\n<meta property=\"og:site_name\" content=\"Mathemerize\" \/>\n<meta property=\"article:published_time\" content=\"2021-09-21T13:04:20+00:00\" \/>\n<meta property=\"article:modified_time\" content=\"2021-11-14T18:44:07+00:00\" \/>\n<meta name=\"author\" content=\"mathemerize\" \/>\n<meta name=\"twitter:card\" content=\"summary_large_image\" \/>\n<meta name=\"twitter:label1\" content=\"Written by\" \/>\n\t<meta name=\"twitter:data1\" content=\"mathemerize\" \/>\n\t<meta name=\"twitter:label2\" content=\"Est. reading time\" \/>\n\t<meta name=\"twitter:data2\" content=\"3 minutes\" \/>\n<script type=\"application\/ld+json\" class=\"yoast-schema-graph\">{\"@context\":\"https:\/\/schema.org\",\"@graph\":[{\"@type\":\"Article\",\"@id\":\"https:\/\/mathemerize.com\/differentials-errors-and-approximations\/#article\",\"isPartOf\":{\"@id\":\"https:\/\/mathemerize.com\/differentials-errors-and-approximations\/\"},\"author\":{\"name\":\"mathemerize\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df\"},\"headline\":\"Differentials Errors and Approximations\",\"datePublished\":\"2021-09-21T13:04:20+00:00\",\"dateModified\":\"2021-11-14T18:44:07+00:00\",\"mainEntityOfPage\":{\"@id\":\"https:\/\/mathemerize.com\/differentials-errors-and-approximations\/\"},\"wordCount\":477,\"commentCount\":0,\"publisher\":{\"@id\":\"https:\/\/mathemerize.com\/#organization\"},\"keywords\":[\"calculus\",\"differentials\",\"Differentials Errors and Approximations\",\"linear approximation\"],\"articleSection\":[\"Application of Derivatives\"],\"inLanguage\":\"en-US\",\"potentialAction\":[{\"@type\":\"CommentAction\",\"name\":\"Comment\",\"target\":[\"https:\/\/mathemerize.com\/differentials-errors-and-approximations\/#respond\"]}]},{\"@type\":\"WebPage\",\"@id\":\"https:\/\/mathemerize.com\/differentials-errors-and-approximations\/\",\"url\":\"https:\/\/mathemerize.com\/differentials-errors-and-approximations\/\",\"name\":\"Differentials Errors and Approximations - Mathemerize\",\"isPartOf\":{\"@id\":\"https:\/\/mathemerize.com\/#website\"},\"datePublished\":\"2021-09-21T13:04:20+00:00\",\"dateModified\":\"2021-11-14T18:44:07+00:00\",\"description\":\"In this post you will learn what is differentials errors and approximations with examples.\",\"breadcrumb\":{\"@id\":\"https:\/\/mathemerize.com\/differentials-errors-and-approximations\/#breadcrumb\"},\"inLanguage\":\"en-US\",\"potentialAction\":[{\"@type\":\"ReadAction\",\"target\":[\"https:\/\/mathemerize.com\/differentials-errors-and-approximations\/\"]}]},{\"@type\":\"BreadcrumbList\",\"@id\":\"https:\/\/mathemerize.com\/differentials-errors-and-approximations\/#breadcrumb\",\"itemListElement\":[{\"@type\":\"ListItem\",\"position\":1,\"name\":\"Home\",\"item\":\"https:\/\/mathemerize.com\/\"},{\"@type\":\"ListItem\",\"position\":2,\"name\":\"Differentials Errors and Approximations\"}]},{\"@type\":\"WebSite\",\"@id\":\"https:\/\/mathemerize.com\/#website\",\"url\":\"https:\/\/mathemerize.com\/\",\"name\":\"Mathemerize\",\"description\":\"Maths Tutorials - Study Math Online\",\"publisher\":{\"@id\":\"https:\/\/mathemerize.com\/#organization\"},\"potentialAction\":[{\"@type\":\"SearchAction\",\"target\":{\"@type\":\"EntryPoint\",\"urlTemplate\":\"https:\/\/mathemerize.com\/?s={search_term_string}\"},\"query-input\":\"required name=search_term_string\"}],\"inLanguage\":\"en-US\"},{\"@type\":\"Organization\",\"@id\":\"https:\/\/mathemerize.com\/#organization\",\"name\":\"Mathemerize\",\"url\":\"https:\/\/mathemerize.com\/\",\"logo\":{\"@type\":\"ImageObject\",\"inLanguage\":\"en-US\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/\",\"url\":\"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1\",\"contentUrl\":\"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1\",\"width\":140,\"height\":96,\"caption\":\"Mathemerize\"},\"image\":{\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/\"},\"sameAs\":[\"https:\/\/www.instagram.com\/mathemerize\/\"]},{\"@type\":\"Person\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df\",\"name\":\"mathemerize\",\"image\":{\"@type\":\"ImageObject\",\"inLanguage\":\"en-US\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/person\/image\/\",\"url\":\"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g\",\"contentUrl\":\"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g\",\"caption\":\"mathemerize\"},\"sameAs\":[\"https:\/\/mathemerize.com\"],\"url\":\"https:\/\/mathemerize.com\/author\/mathemerize\/\"}]}<\/script>\n<!-- \/ Yoast SEO plugin. -->","yoast_head_json":{"title":"Differentials Errors and Approximations - Mathemerize","description":"In this post you will learn what is differentials errors and approximations with examples.","robots":{"index":"index","follow":"follow","max-snippet":"max-snippet:-1","max-image-preview":"max-image-preview:large","max-video-preview":"max-video-preview:-1"},"canonical":"https:\/\/mathemerize.com\/differentials-errors-and-approximations\/","og_locale":"en_US","og_type":"article","og_title":"Differentials Errors and Approximations - Mathemerize","og_description":"In this post you will learn what is differentials errors and approximations with examples.","og_url":"https:\/\/mathemerize.com\/differentials-errors-and-approximations\/","og_site_name":"Mathemerize","article_published_time":"2021-09-21T13:04:20+00:00","article_modified_time":"2021-11-14T18:44:07+00:00","author":"mathemerize","twitter_card":"summary_large_image","twitter_misc":{"Written by":"mathemerize","Est. reading time":"3 minutes"},"schema":{"@context":"https:\/\/schema.org","@graph":[{"@type":"Article","@id":"https:\/\/mathemerize.com\/differentials-errors-and-approximations\/#article","isPartOf":{"@id":"https:\/\/mathemerize.com\/differentials-errors-and-approximations\/"},"author":{"name":"mathemerize","@id":"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df"},"headline":"Differentials Errors and Approximations","datePublished":"2021-09-21T13:04:20+00:00","dateModified":"2021-11-14T18:44:07+00:00","mainEntityOfPage":{"@id":"https:\/\/mathemerize.com\/differentials-errors-and-approximations\/"},"wordCount":477,"commentCount":0,"publisher":{"@id":"https:\/\/mathemerize.com\/#organization"},"keywords":["calculus","differentials","Differentials Errors and Approximations","linear approximation"],"articleSection":["Application of Derivatives"],"inLanguage":"en-US","potentialAction":[{"@type":"CommentAction","name":"Comment","target":["https:\/\/mathemerize.com\/differentials-errors-and-approximations\/#respond"]}]},{"@type":"WebPage","@id":"https:\/\/mathemerize.com\/differentials-errors-and-approximations\/","url":"https:\/\/mathemerize.com\/differentials-errors-and-approximations\/","name":"Differentials Errors and Approximations - Mathemerize","isPartOf":{"@id":"https:\/\/mathemerize.com\/#website"},"datePublished":"2021-09-21T13:04:20+00:00","dateModified":"2021-11-14T18:44:07+00:00","description":"In this post you will learn what is differentials errors and approximations with examples.","breadcrumb":{"@id":"https:\/\/mathemerize.com\/differentials-errors-and-approximations\/#breadcrumb"},"inLanguage":"en-US","potentialAction":[{"@type":"ReadAction","target":["https:\/\/mathemerize.com\/differentials-errors-and-approximations\/"]}]},{"@type":"BreadcrumbList","@id":"https:\/\/mathemerize.com\/differentials-errors-and-approximations\/#breadcrumb","itemListElement":[{"@type":"ListItem","position":1,"name":"Home","item":"https:\/\/mathemerize.com\/"},{"@type":"ListItem","position":2,"name":"Differentials Errors and Approximations"}]},{"@type":"WebSite","@id":"https:\/\/mathemerize.com\/#website","url":"https:\/\/mathemerize.com\/","name":"Mathemerize","description":"Maths Tutorials - Study Math Online","publisher":{"@id":"https:\/\/mathemerize.com\/#organization"},"potentialAction":[{"@type":"SearchAction","target":{"@type":"EntryPoint","urlTemplate":"https:\/\/mathemerize.com\/?s={search_term_string}"},"query-input":"required name=search_term_string"}],"inLanguage":"en-US"},{"@type":"Organization","@id":"https:\/\/mathemerize.com\/#organization","name":"Mathemerize","url":"https:\/\/mathemerize.com\/","logo":{"@type":"ImageObject","inLanguage":"en-US","@id":"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/","url":"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1","contentUrl":"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1","width":140,"height":96,"caption":"Mathemerize"},"image":{"@id":"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/"},"sameAs":["https:\/\/www.instagram.com\/mathemerize\/"]},{"@type":"Person","@id":"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df","name":"mathemerize","image":{"@type":"ImageObject","inLanguage":"en-US","@id":"https:\/\/mathemerize.com\/#\/schema\/person\/image\/","url":"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g","contentUrl":"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g","caption":"mathemerize"},"sameAs":["https:\/\/mathemerize.com"],"url":"https:\/\/mathemerize.com\/author\/mathemerize\/"}]}},"jetpack_featured_media_url":"","_links":{"self":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts\/5581"}],"collection":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/users\/1"}],"replies":[{"embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/comments?post=5581"}],"version-history":[{"count":12,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts\/5581\/revisions"}],"predecessor-version":[{"id":8167,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts\/5581\/revisions\/8167"}],"wp:attachment":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/media?parent=5581"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/categories?post=5581"},{"taxonomy":"post_tag","embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/tags?post=5581"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}