{"id":5827,"date":"2021-10-03T17:54:07","date_gmt":"2021-10-03T12:24:07","guid":{"rendered":"https:\/\/mathemerize.com\/?p=5827"},"modified":"2021-11-25T23:58:01","modified_gmt":"2021-11-25T18:28:01","slug":"integration-of-cotx","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/integration-of-cotx\/","title":{"rendered":"Integration of Cotx"},"content":{"rendered":"
Here you will learn proof of integration of cotx or cot x and examples based on it.<\/p>\n
Let’s begin –<\/p>\n
\nThe integration of cotx is \u00a0log |sin x| + C<\/strong> or – log |cosec x| + C<\/strong><\/p>\n
i.e. \\(\\int\\) (cotx) dx =\u00a0 log |sin x| + C or,<\/p>\n
\\(\\int\\) (cotx) dx = -log |cosec x| + C<\/p>\n<\/blockquote>\n
Proof :\u00a0\u00a0<\/strong><\/p>\n
\nLet I = \\(\\int\\) (cot x) dx<\/p>\n
Then, I = \\(\\int\\) \\(cos x\\over sin x\\) dx<\/p>\n
Let sin x = t\u00a0<\/p>\n
Then, d(sin x) = dt \\(\\implies\\) cos x dx = dt\u00a0<\/p>\n
\\(\\implies\\) dx = \\(dt\\over cos x\\)<\/p>\n
Putting sin x = t, and dx = \\(dt\\over cos x\\), we get<\/p>\n
I = \\(\\int\\) \\(cos x\\over sin x\\) \\(\\times\\) \\(dt\\over cos x\\)<\/p>\n
= \\(\\int\\) \\(1\\over t\\) dt =\u00a0 log |t| + C<\/p>\n
=\u00a0 log |sin x| + C<\/p>\n
And sin x = \\(1\\over cosec x\\)<\/p>\n
\\(\\implies\\) I = log |1\/cosec x| + C = \\(log |cosec^{-1} x|\\) + C = -log |cosec x| + C<\/p>\n
Hence, \\(\\int\\) (cotx) dx = log |sin x| + C or, \\(\\int\\) (cotx) dx = -log |cosec x| + C<\/p>\n<\/blockquote>\n
Example<\/strong><\/span> : Evaluate : \\(\\int\\) \\(\\sqrt{{1+cos 2x}\\over {1-cos 2x}}\\) dx<\/p>\n
Solution<\/strong><\/span> : We have,\u00a0<\/p>\n
I = \\(\\int\\) \\(\\sqrt{{1+cos 2x}\\over {1-cos 2x}}\\) dx<\/p>\n
By Trigonometry formulas,<\/p>\n
1 – cos 2x = \\(2sin^2 x\\) and 1 + cos 2x = \\(2cos^2 x\\)<\/p>\n
\\(\\implies\\) I = \\(\\int\\) \\(\\sqrt{{2cos^2 x}\\over {2sin^2 x}}\\) dx<\/p>\n
\\(\\implies\\) I = \\(\\int\\) \\({cos x}\\over {sin x}\\) dx<\/p>\n
{\\(\\because\\) \\({cos x}\\over {sin x}\\) = cot x }<\/p>\n
\\(\\implies\\) I = \\(\\int\\) cot x dx\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0<\/p>\n
\\(\\implies\\) I = log |sin x| + C = – log |cosec x| + C<\/p>\n
\nRelated Questions<\/h3>\n
What is the Differentiation of cot x ?<\/a><\/p>\n
What is the Integration of cot inverse x ?<\/a><\/p>\n
What is the Differentiation of cot inverse x ?<\/a><\/p>\n\n\n