Here you will learn proof of integration of tan inverse x or arctan x and examples based on it.<\/p>\n
Let’s begin –<\/p>\n
\nThe integration of tan inverse x or arctan x is \\(xtan^{-1}x\\) – \\(1\\over 2\\) \\(log |1 + x^2|\\) + C<\/strong><\/p>\n
Where C is the integration constant.<\/p>\n
i.e. \\(\\int\\) \\(tan^{-1}x\\) = \\(xtan^{-1}x\\) – \\(1\\over 2\\) \\(log |1 + x^2|\\) + C<\/p>\n<\/blockquote>\n
Proof :\u00a0<\/strong><\/p>\n
\nWe have, I = \\(\\int\\) \\(tan^{-1}x\\) dx<\/p>\n
Let \\(tan^{-1}x\\) = t,<\/p>\n
Then, x = tan t<\/p>\n
\\(\\implies\\) dx = d(tan t) = \\(sec^2 t\\) dt<\/p>\n
\\(\\therefore\\) I = \\(\\int\\) \\(tan^{-1}x\\) dx<\/p>\n
\\(\\implies\\) I = \\(\\int\\) t \\(sec^2 t\\) dt<\/p>\n
By using integration by parts formula<\/a>,<\/p>\n
I = t tan t – \\(\\int\\) 1. (tan t) dt<\/p>\n
I = t tan t + log |cos t| + C<\/p>\n
Now, Put t = \\(tan^{-1}x\\) here,<\/p>\n
\\(\\implies\\) I = x \\(tan^{-1}x\\) + \\(log |{1\\over \\sqrt{ 1+ x^2}}|\\) + C<\/p>\n
Example<\/strong><\/span> : Evaluate \\(\\int\\) \\(x tan^{-1} x\\) dx<\/p>\n
Solution<\/strong><\/span> : We have,<\/p>\n
I = \\(\\int\\)\u00a0 \\(x tan^{-1} x\\) dx<\/p>\n
By using integration by parts formula<\/a>,<\/p>\n
\nRelated Questions<\/h3>\n
What is the Differentiation of tan inverse x ?<\/a><\/p>\n
What is the Integration of tan x ?<\/a><\/p>\n
What is the integration of tan inverse root x ?<\/a><\/p>\n\n\n