{"id":5847,"date":"2021-10-03T16:43:05","date_gmt":"2021-10-03T11:13:05","guid":{"rendered":"https:\/\/mathemerize.com\/?p=5847"},"modified":"2021-11-26T00:04:58","modified_gmt":"2021-11-25T18:34:58","slug":"integration-of-sinx","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/integration-of-sinx\/","title":{"rendered":"Integration of Sinx"},"content":{"rendered":"
Here you will learn proof of integration of sinx or sin x and examples based on it.<\/p>\n
Let’s begin –<\/p>\n
\nThe integration of sinx is -cosx + C<\/b><\/p>\n
where C is the integration constant.<\/p>\n
i.e. \\(\\int\\) (sinx) dx = -cos x + C<\/p>\n<\/blockquote>\n
Proof :<\/strong><\/p>\n
\nWe will prove this formula using differentiation,<\/p>\n
Let \\(d\\over dx\\)(-cos x + C) = -\\(d\\over dx\\) cos x + \\(d\\over dx\\) C<\/p>\n
Using differentiation formula,<\/p>\n
\\(d\\over dx\\) cos x = -sin x and differentation of constant is 0.<\/p>\n
\\(\\implies\\) \\(d\\over dx\\)(-cos x + C) = -\\(d\\over dx\\) cos x + \\(d\\over dx\\) C<\/p>\n
\\(\\implies\\) \\(d\\over dx\\)(-cos x + C) = -(-sin x) + 0<\/p>\n
We can also write it as,<\/p>\n
sin x = \\(d\\over dx\\)(-cos x + C)<\/p>\n
Now, integrating on both sides,<\/p>\n
\\(\\int\\) sin x = \\(\\int\\) \\(d\\over dx\\)(-cos x + C)<\/p>\n
We know that integration and differentiation both are reciprocals of each other, so in right hand side expression they cancel each other and we get,<\/p>\n
Hence, \\(\\int\\) sin x = -cos x + C<\/p>\n<\/blockquote>\n
Example<\/span><\/strong> : Prove that \\(\\int\\) sin (ax + b) = \\(-1\\over a\\) cos(ax + b) + C.<\/p>\n
Solution<\/span><\/strong> : We have,\u00a0<\/p>\n
I = \\(\\int\\) sin (ax + b) dx<\/p>\n
Let ax + b = t, Then , d(ax + b) = dt \\(\\implies\\) adx = dt<\/p>\n
\\(\\implies\\) dx = \\(1\\over a\\) dt<\/p>\n
Putting ax + b = t and\u00a0 dx = \\(1\\over a\\) dt , we get<\/p>\n
\\(\\int\\) sin (ax + b) dx = \\(1\\over a\\) \\(\\int\\) sin t dt<\/p>\n
= \\(-1\\over a\\) cos t + C<\/p>\n
= \\(-1\\over a\\) cos(ax + b) + C<\/p>\n
Hence, \\(\\int\\) sin (ax + b) = \\(-1\\over a\\) cos(ax + b) + C<\/p>\n
\nRelated Questions<\/h3>\n
What is the Differentiation of sin x ?<\/a><\/p>\n
What is the Integration of Sin Inverse x ?<\/a><\/p>\n
What is the Differentiation of sin inverse x ?<\/a><\/p>\n\n\n