{"id":5943,"date":"2021-10-04T16:24:19","date_gmt":"2021-10-04T10:54:19","guid":{"rendered":"https:\/\/mathemerize.com\/?p=5943"},"modified":"2022-03-06T14:13:17","modified_gmt":"2022-03-06T08:43:17","slug":"periodic-matrix","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/periodic-matrix\/","title":{"rendered":"Periodic Matrix – Definition and Example"},"content":{"rendered":"
Here you will learn what is periodic matrix with examples.<\/p>\n
Let’s begin –<\/p>\n
\nA square matrix which satisfies the relation \\(A^{k+1}\\) = A for some positive integer k, is called a periodic matrix.<\/p>\n
The period of the matrix is the least value of k for which \\(A^{k+1}\\) = A holds true.<\/p>\n
Note that the period of idempotent matrix is 1.<\/p>\n<\/blockquote>\n
Example<\/span><\/strong> : Find the period of the matrix A = \\(\\begin{bmatrix} 1 & -2 &\u00a0 -6 \\\\\u00a0 -3 & 2 & 9 \\\\\u00a0 2 & 0 & -3 \\end{bmatrix}\\).<\/p>\n
Solution<\/span><\/strong> : We have,<\/p>\n
A = \\(\\begin{bmatrix} 1 & -2 &\u00a0 -6 \\\\\u00a0 -3 & 2 & 9 \\\\\u00a0 2 & 0 & -3 \\end{bmatrix}\\).<\/p>\n
Now, \\(A^2\\) = A.A<\/p>\n
\\(\\implies\\) \\(A^2\\) = \\(\\begin{bmatrix} 1 & -2 &\u00a0 -6 \\\\\u00a0 -3 & 2 & 9 \\\\\u00a0 2 & 0 & 3 \\end{bmatrix}\\) \\(\\times\\) \\(\\begin{bmatrix} 1 & -2 &\u00a0 -6 \\\\\u00a0 -3 & 2 & 9 \\\\\u00a0 2 & 0 & 3 \\end{bmatrix}\\)<\/p>\n
= \\(\\begin{bmatrix} 5 & -6 &\u00a0 -6 \\\\\u00a0 9 & 10 & 9 \\\\\u00a0 -4 & -4 & -3 \\end{bmatrix}\\).<\/p>\n
Now, \\(A^3\\) = \\(A^2\\).A<\/p>\n
\\(\\implies\\) \\(A^3\\) = \\(\\begin{bmatrix} 5 & -6 &\u00a0 -6 \\\\\u00a0 9 & 10 & 9 \\\\\u00a0 -4 & -4 & -3 \\end{bmatrix}\\) \\(\\times\\) \\(\\begin{bmatrix} 1 & -2 &\u00a0 -6 \\\\\u00a0 -3 & 2 & 9 \\\\\u00a0 2 & 0 & -3 \\end{bmatrix}\\)<\/p>\n
= \\(\\begin{bmatrix} 1 & -2 &\u00a0 -6 \\\\\u00a0 -3 & 2 & 9 \\\\\u00a0 2 & 0 & -3 \\end{bmatrix}\\) = A<\/p>\n
Hence, \\(A^3\\) = A. comparing it with the equation \\(A^{k+1}\\) = A gives k = 2.<\/p>\n
So, Period of the given matrix is 2.<\/p>\n\n\n