{"id":5947,"date":"2021-10-04T17:15:56","date_gmt":"2021-10-04T11:45:56","guid":{"rendered":"https:\/\/mathemerize.com\/?p=5947"},"modified":"2022-03-06T14:15:54","modified_gmt":"2022-03-06T08:45:54","slug":"nilpotent-matrix","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/nilpotent-matrix\/","title":{"rendered":"Nilpotent Matrix – Definition and Example"},"content":{"rendered":"
Here you will learn what is nilpotent matrix with examples.<\/p>\n
Let’s begin –<\/p>\n
\nA square matrix of the order ‘n’ is said to be a nilpotent matrix of order m, m \\(\\in\\) N<\/p>\n
if \\(A^m\\) = O & \\(A^{m-1}\\) \\(\\ne\\) O.<\/p>\n<\/blockquote>\n
Example<\/span><\/strong> : Show that A = \\(\\begin{bmatrix} 1 & 1 &\u00a0 3 \\\\\u00a0 5 & 2 & 6 \\\\\u00a0 -2 & -1 & -3 \\end{bmatrix}\\) is a nilpotent matrix of order 3.<\/p>\n
Solution<\/span><\/strong> : We have given the matrix A,<\/p>\n
A = \\(\\begin{bmatrix} 1 & 1 &\u00a0 3 \\\\\u00a0 5 & 2 & 6 \\\\\u00a0 -2 & -1 & -3 \\end{bmatrix}\\)<\/p>\n
Now first we find, \\(A^2\\) = A.A<\/p>\n
\\(\\implies\\) \\(A^2\\) = \\(\\begin{bmatrix} 1 & 1 &\u00a0 3 \\\\\u00a0 5 & 2 & 6 \\\\\u00a0 -2 & -1 & -3 \\end{bmatrix}\\) \\(\\times\\) \\(\\begin{bmatrix} 1 & 1 &\u00a0 3 \\\\\u00a0 5 & 2 & 6 \\\\\u00a0 -2 & -1 & -3 \\end{bmatrix}\\)<\/p>\n
= \\(\\begin{bmatrix} 0 & 0 &\u00a0 0 \\\\\u00a0 3 & 3 & 9 \\\\\u00a0 -1 & -1 & -3 \\end{bmatrix}\\).<\/p>\n
Now, we have to find \\(A^3\\) = \\(A^2\\).A<\/p>\n
\\(\\implies\\) \\(A^3\\) = \\(\\begin{bmatrix} 0 & 0 &\u00a0 0 \\\\\u00a0 3 & 3 & 9 \\\\\u00a0 -1 & -1 & -3 \\end{bmatrix}\\) \\(\\times\\) \\(\\begin{bmatrix} 1 & 1 &\u00a0 3 \\\\\u00a0 5 & 2 & 6 \\\\\u00a0 -2 & -1 & -3 \\end{bmatrix}\\)<\/p>\n
= \\(\\begin{bmatrix} 0 & 0 &\u00a0 0 \\\\\u00a0 0 & 0 & 0 \\\\\u00a0 0 & 0 & 0 \\end{bmatrix}\\) = O<\/p>\n
\\(\\therefore\\) \\(A^3\\) = O i.e. \\(A^k\\) = O<\/p>\n
Here k =3<\/p>\n
Hence A is a nilpotent matrix of order 3.<\/p>\n\n\n