Example 1 : <\/span> If f(x + y) = f(x) + f(y) – 2xy – 1 for all x and y. If f'(0) exists and f'(0) = -sin\\(\\alpha\\), then find f{f'(0)}.<\/p>\n Solution : <\/span>f'(x) = \\(\\displaystyle{\\lim_{h \\to 0}}\\) \\(f(x+h) – f(x)\\over h\\) Example 2 : <\/span>Discuss the continuity and differentiability of the function y = f(x) defined parametrically; x = 2t – |t-1| and y = 2\\(t^2\\) + t|t|.<\/p>\n\t\t Solution : <\/span>Here x = 2t – |t-1| and y = 2\\(t^2\\) + t|t|. Practice these given differentiability examples to test your knowledge on concepts of differentiability.<\/p>\n \n <\/div>\n <\/div>\n","protected":false},"excerpt":{"rendered":" Here you will learn some differentiability examples for better understanding of differentiability concepts. Example 1 : If f(x + y) = f(x) + f(y) – 2xy – 1 for all x and y. If f'(0) exists and f'(0) = -sin\\(\\alpha\\), then find f{f'(0)}. Solution : f'(x) = \\(\\displaystyle{\\lim_{h \\to 0}}\\) \\(f(x+h) – f(x)\\over h\\) = …<\/p>\n
\n = \\(\\displaystyle{\\lim_{h \\to 0}}\\) \\({f(x)+f(h)-2xh-1} – f(x)\\over h\\)
\n = \\(\\displaystyle{\\lim_{h \\to 0}}\\) -2x + \\(\\displaystyle{\\lim_{h \\to 0}}\\) \\(f(h)-1\\over h\\) = -2x + \n \\(\\displaystyle{\\lim_{h \\to 0}}\\) \\(f(h) – f(0)\\over h\\)
\n [Putting x = 0 = y in the given relation we find f(0) = f(0) + f(0) + 0 – 1 \\(\\implies\\) f(0) = 1]
\n \\(\\therefore\\) f'(x) = -2x + f'(0) = -2x – sin\\(\\alpha\\)
\n \\(\\implies\\) f(x) = -\\(x^2\\) – (sin\\(\\alpha\\)).x + c
\n f(0) = – 0 – 0 + c \\(\\implies\\) c = 1
\n \\(\\therefore\\) f(x) = -\\(x^2\\) – (sin\\(\\alpha\\)).x + 1
\n so, f{f'(0)} = f(-sin\\(\\alpha\\)) = -\\(sin^2\\alpha\\) + \\(sin^2\\alpha\\) + 1 = 1<\/p>\n
\n\n \n
\n\t\t Now when t < 0;
\n\t\t x = 2t – {-(t-1)} = 3t – 1 and y = 2\\(t^2\\) – \\(t^2\\) = \\(t^2\\) \\(\\implies\\) = y = \\({1\\over 9}{(x+1)}^2\\)
\n\t\t = when 0 \\(\\le\\) t < 1
\n\t\t x = 2t – {-(t-1)} = 3t – 1 and y = 2\\(t^2\\) – \\(t^2\\) = 3\\(t^2\\) \\(\\implies\\) = y = \\({1\\over 3}{(x+1)}^2\\)
\n\t\t when t \\(\\ge\\) 1;
\n\t\t x = 2t – (t-1) = t + 1 and y = 2\\(t^2\\) + \\(t^2\\) = 3\\(t^2\\) \\(\\implies\\) = y = 3\\({(x+1)}^2\\)
\n\t\t Thus, y = f(x) = \\({1\\over 9}{(x+1)}^2\\), x < -1
\n\t\t y = f(x) = \\({1\\over 3}{(x+1)}^2\\), -1\\(\\le\\)x < 2
\n\t\t y = f(x) = 3\\({(x+1)}^2\\), x\\(\\ge\\) 2
\n\t\t We have to check differentiability at x = -1 and 2.
\n\t\t Differentiabilty at x = -1;\n\t\t LHD = f'(\\(-1)^-\\) = \\(\\displaystyle{\\lim_{h \\to 0}}\\)\\(f(-1-h) – f(-1)\\over -h\\) = \n\t\t \\(\\displaystyle{\\lim_{h \\to 0}}\\) \\({1\\over 9}(-1-h+1)^2 – 0\\over -h\\) = 0
\n\t\t RHD = f'(\\(-1)^+\\) = \\(\\displaystyle{\\lim_{h \\to 0}}\\)\\(f(-1+h) – f(-1)\\over h\\) = \n\t\t \\(\\displaystyle{\\lim_{h \\to 0}}\\) \\({1\\over 3}(-1+h+1)^2 – 0\\over h\\) = 0
\n\t\t Hence f(x) is differentiable at x = -1
\n\t\t \\(\\implies\\) continuous at x = -1.
\n\t\t To check differentiability at x = 2;
\n\t\t LHD = f'(\\(2)^-\\) = \\(\\displaystyle{\\lim_{h \\to 0}}\\)\\({1\\over 3}(2-h+1)^2 – 3\\over -h\\) = 2
\n\t\t RHD = f'(\\(2)^+\\) = \\(\\displaystyle{\\lim_{h \\to 0}}\\)\\(3(2+h-1)^2 – 3\\over h\\) = 6
\n\t\t Hence f(x) is not differentiable at x = 2.
\n\t\t But continuous at x = 2, because LHD and RHD both are finite.
\n\t\t f(x) is continuous for all x and differentiable for all x, except x = 2.\n
\n<\/p>