{"id":6006,"date":"2021-10-04T21:56:58","date_gmt":"2021-10-04T16:26:58","guid":{"rendered":"https:\/\/mathemerize.com\/?p=6006"},"modified":"2021-10-04T21:58:06","modified_gmt":"2021-10-04T16:28:06","slug":"inverse-trignometric-function-examples","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/inverse-trignometric-function-examples\/","title":{"rendered":"Inverse Trignometric Function Examples"},"content":{"rendered":"

Here you will learn some inverse trignometric function examples for better understanding of inverse trigonometric function concepts<\/a><\/span>.<\/p>\n\n\n

\n
\n\n \n

Example 1 : <\/span>Find the value of \\(sin^{-1}({-\\sqrt{3}\\over 2})\\) + \\(cos^{-1}(cos({7\\pi\\over 6}))\\).<\/p>\n

Solution : <\/span>\\(sin^{-1}({-\\sqrt{3}\\over 2})\\) = – \\(sin^{-1}({\\sqrt{3}\\over 2})\\) = \\(-\\pi\\over 3\\)

\n \\(cos^{-1}(cos({7\\pi\\over 6}))\\) = \\(cos^{-1}(cos({2\\pi – {5\\pi\\over 6}}))\\) = \\(cos^{-1}(cos({5\\pi\\over 6}))\\) = \\(5\\pi\\over 6\\)

\n Hence \\(sin^{-1}({-\\sqrt{3}\\over 2})\\) + \\(cos^{-1}(cos({7\\pi\\over 6}))\\) = \\(-\\pi\\over 3\\) + \\(5\\pi\\over 6\\) = \\(\\pi\\over 2\\)<\/p>\n



\n\n \n

Example 2 : <\/span> Prove that : \\(cos^{-1}{12\\over 13}\\) + \\(sin^{-1}{3\\over 5}\\) = \\(sin^{-1}{56\\over 65}\\)<\/p>\n

Solution : <\/span>We have, L.H.S. = \\(cos^{-1}{12\\over 13}\\) + \\(sin^{-1}{3\\over 5}\\) = \\(tan^{-1}{5\\over 12}\\) + \\(tan^{-1}{3\\over 4}\\)

\n \\(\\because\\)   [ \\(cos^{-1}{12\\over 13}\\) = \\(tan^{-1}{5\\over 12}\\) & \\(sin^{-1}{3\\over 5}\\) = \\(tan^{-1}{3\\over 4}\\) ]

\n L.H.S. = \\(tan^{-1}({{{5\\over 12} + {3\\over 4}}\\over {1 – {5\\over 12}.{3\\over 4}}})\\) = \\(tan^{-1}{56\\over 33}\\)

\n R.H.S. = \\(sin^{-1}{56\\over 65}\\) = \\(tan^{-1}{56\\over 33}\\)

\n L.H.S = R.H.S.   Hence Proved.<\/p>\n



\n\n \n

Example 3 : <\/span> Evaluate \\(sin^{-1}(sin10)\\)<\/p>\n

Solution : <\/span>We know that \\(sin^{-1}(sinx)\\) = x, if \\(-\\pi\\over 2\\) \\(\\le\\) x \\(\\le\\) \\(\\pi\\over 2\\)

\n Here, x = 10 radians which does not lie between -\\(\\pi\\over 2\\) and \\(\\pi\\over 2\\)

\n But, \\(3\\pi\\) – x i.e. \\(3\\pi\\) – 10 lie between -\\(\\pi\\over 2\\) and \\(\\pi\\over 2\\)

\n Also, sin(\\(3\\pi\\) – 10) = sin 10

\n \\(\\therefore\\)   \\(sin^{-1}(sin10)\\) = \\(sin^{-1}(sin(3\\pi – 10)\\) = (\\(3\\pi\\) – 10)<\/p>\n



\n\n \n

Example 4 : <\/span> Prove that : \\(sin^{-1}{12\\over 13}\\) + \\(cot^{-1}{4\\over 3}\\) + \\(tan^{-1}{63\\over 16}\\) = \\(\\pi\\)<\/p>\n

Solution : <\/span>We have, A = \\(sin^{-1}{12\\over 13}\\) + \\(cot^{-1}{4\\over 3}\\) + \\(tan^{-1}{63\\over 16}\\)

\n A = \\(tan^{-1}{12\\over 5}\\) + \\(tan^{-1}{3\\over 4}\\) + \\(tan^{-1}{63\\over 16}\\)

\n \\(\\implies\\) A = \\(\\pi\\) + \\(tan^{-1}({{{12\\over 5} + {3\\over 4}}\\over {1 – {12\\over 5} \\times {3\\over 4}}})\\) + \\(tan^{-1}{63\\over 16}\\)

\n \\(\\implies\\) A = \\(\\pi\\) + \\(tan^{-1}{63\\over (-16)}\\) + \\(tan^{-1}{63\\over 16}\\)

\n = \\(\\pi\\) – \\(tan^{-1}{63\\over 16}\\) + \\(tan^{-1}{63\\over 16}\\)

\n = \\(\\pi\\) <\/p>\n



\n\n

Example 5 : <\/span>Solve the equation : 2\\(tan^{-1}({2x+1})\\) = \\(cos^{-1}x\\)<\/p>\n

Solution : <\/span>Here, 2\\(tan^{-1}({2x+1})\\) = \\(cos^{-1}x\\)

\n cos(2\\(tan^{-1}({2x+1})\\)) = x       { We Know cos2x = \\({1-tan^2x\\over {1+tan^2x}}\\)}

\n \\(\\therefore\\)     \\({{1-{(2x+1)}^2}\\over {1-{(2x+1)}^2}}\\) = x   \\(\\implies\\)   (1 – 2x – 1)(1 + 2x + 1) = x(\\(4x^2 + 4x + 2\\))

\n \\(\\implies\\)   -2x.2(x + 1) = 2x(\\(2x^2 + 2x + 1\\))   \\(\\implies\\)   2x(\\(2x^2 + 2x + 1 + 2x + 2\\)) = 0

\n \\(\\implies\\)   x = 0   or   \\(2x^2 + 4x + 3\\) = 0   { No Solution }

\n Verify       x = 0

\n \\(2tan^{-1}(1)\\) = \\(cos^{-1}(1)\\)   \\(\\implies\\)   \\(\\pi\\over 2\\) = \\(\\pi\\over 2\\)

\n \\(\\therefore\\)     x = 0 is only the solution.<\/p>\n
\n

Practice these given inverse trignometric function examples to test your knowledge on concepts of inverse trigonometric function.<\/p>\n \n <\/div>\n <\/div>\n","protected":false},"excerpt":{"rendered":"

Here you will learn some inverse trignometric function examples for better understanding of inverse trigonometric function concepts. Example 1 : Find the value of \\(sin^{-1}({-\\sqrt{3}\\over 2})\\) + \\(cos^{-1}(cos({7\\pi\\over 6}))\\). Solution : \\(sin^{-1}({-\\sqrt{3}\\over 2})\\) = – \\(sin^{-1}({\\sqrt{3}\\over 2})\\) = \\(-\\pi\\over 3\\) \\(cos^{-1}(cos({7\\pi\\over 6}))\\) = \\(cos^{-1}(cos({2\\pi – {5\\pi\\over 6}}))\\) = \\(cos^{-1}(cos({5\\pi\\over 6}))\\) = \\(5\\pi\\over 6\\) Hence \\(sin^{-1}({-\\sqrt{3}\\over …<\/p>\n

Inverse Trignometric Function Examples<\/span> Read More »<\/a><\/p>\n","protected":false},"author":1,"featured_media":0,"comment_status":"open","ping_status":"closed","sticky":false,"template":"","format":"standard","meta":{"site-sidebar-layout":"default","site-content-layout":"default","ast-global-header-display":"","ast-main-header-display":"","ast-hfb-above-header-display":"","ast-hfb-below-header-display":"","ast-hfb-mobile-header-display":"","site-post-title":"","ast-breadcrumbs-content":"","ast-featured-img":"","footer-sml-layout":"","theme-transparent-header-meta":"default","adv-header-id-meta":"","stick-header-meta":"","header-above-stick-meta":"","header-main-stick-meta":"","header-below-stick-meta":""},"categories":[27],"tags":[],"yoast_head":"\nInverse Trignometric Function Examples - Mathemerize<\/title>\n<meta name=\"description\" content=\"Solve these Inverse Trignometric Function examples to practice and test your knowledge of Inverse Trignometric Function concepts.\" \/>\n<meta name=\"robots\" content=\"index, follow, max-snippet:-1, max-image-preview:large, max-video-preview:-1\" \/>\n<link rel=\"canonical\" href=\"https:\/\/mathemerize.com\/inverse-trignometric-function-examples\/\" \/>\n<meta property=\"og:locale\" content=\"en_US\" \/>\n<meta property=\"og:type\" content=\"article\" \/>\n<meta property=\"og:title\" content=\"Inverse Trignometric Function Examples - Mathemerize\" \/>\n<meta property=\"og:description\" content=\"Solve these Inverse Trignometric Function examples to practice and test your knowledge of Inverse Trignometric Function concepts.\" \/>\n<meta property=\"og:url\" content=\"https:\/\/mathemerize.com\/inverse-trignometric-function-examples\/\" \/>\n<meta property=\"og:site_name\" content=\"Mathemerize\" \/>\n<meta property=\"article:published_time\" content=\"2021-10-04T16:26:58+00:00\" \/>\n<meta property=\"article:modified_time\" content=\"2021-10-04T16:28:06+00:00\" \/>\n<meta name=\"author\" content=\"mathemerize\" \/>\n<meta name=\"twitter:card\" content=\"summary_large_image\" \/>\n<meta name=\"twitter:label1\" content=\"Written by\" \/>\n\t<meta name=\"twitter:data1\" content=\"mathemerize\" \/>\n\t<meta name=\"twitter:label2\" content=\"Est. reading time\" \/>\n\t<meta name=\"twitter:data2\" content=\"2 minutes\" \/>\n<script type=\"application\/ld+json\" class=\"yoast-schema-graph\">{\"@context\":\"https:\/\/schema.org\",\"@graph\":[{\"@type\":\"Article\",\"@id\":\"https:\/\/mathemerize.com\/inverse-trignometric-function-examples\/#article\",\"isPartOf\":{\"@id\":\"https:\/\/mathemerize.com\/inverse-trignometric-function-examples\/\"},\"author\":{\"name\":\"mathemerize\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df\"},\"headline\":\"Inverse Trignometric Function Examples\",\"datePublished\":\"2021-10-04T16:26:58+00:00\",\"dateModified\":\"2021-10-04T16:28:06+00:00\",\"mainEntityOfPage\":{\"@id\":\"https:\/\/mathemerize.com\/inverse-trignometric-function-examples\/\"},\"wordCount\":424,\"commentCount\":0,\"publisher\":{\"@id\":\"https:\/\/mathemerize.com\/#organization\"},\"articleSection\":[\"Inverse Trigonometric Function\"],\"inLanguage\":\"en-US\",\"potentialAction\":[{\"@type\":\"CommentAction\",\"name\":\"Comment\",\"target\":[\"https:\/\/mathemerize.com\/inverse-trignometric-function-examples\/#respond\"]}]},{\"@type\":\"WebPage\",\"@id\":\"https:\/\/mathemerize.com\/inverse-trignometric-function-examples\/\",\"url\":\"https:\/\/mathemerize.com\/inverse-trignometric-function-examples\/\",\"name\":\"Inverse Trignometric Function Examples - Mathemerize\",\"isPartOf\":{\"@id\":\"https:\/\/mathemerize.com\/#website\"},\"datePublished\":\"2021-10-04T16:26:58+00:00\",\"dateModified\":\"2021-10-04T16:28:06+00:00\",\"description\":\"Solve these Inverse Trignometric Function examples to practice and test your knowledge of Inverse Trignometric Function concepts.\",\"breadcrumb\":{\"@id\":\"https:\/\/mathemerize.com\/inverse-trignometric-function-examples\/#breadcrumb\"},\"inLanguage\":\"en-US\",\"potentialAction\":[{\"@type\":\"ReadAction\",\"target\":[\"https:\/\/mathemerize.com\/inverse-trignometric-function-examples\/\"]}]},{\"@type\":\"BreadcrumbList\",\"@id\":\"https:\/\/mathemerize.com\/inverse-trignometric-function-examples\/#breadcrumb\",\"itemListElement\":[{\"@type\":\"ListItem\",\"position\":1,\"name\":\"Home\",\"item\":\"https:\/\/mathemerize.com\/\"},{\"@type\":\"ListItem\",\"position\":2,\"name\":\"Inverse Trignometric Function Examples\"}]},{\"@type\":\"WebSite\",\"@id\":\"https:\/\/mathemerize.com\/#website\",\"url\":\"https:\/\/mathemerize.com\/\",\"name\":\"Mathemerize\",\"description\":\"Maths Tutorials - Study Math Online\",\"publisher\":{\"@id\":\"https:\/\/mathemerize.com\/#organization\"},\"potentialAction\":[{\"@type\":\"SearchAction\",\"target\":{\"@type\":\"EntryPoint\",\"urlTemplate\":\"https:\/\/mathemerize.com\/?s={search_term_string}\"},\"query-input\":\"required name=search_term_string\"}],\"inLanguage\":\"en-US\"},{\"@type\":\"Organization\",\"@id\":\"https:\/\/mathemerize.com\/#organization\",\"name\":\"Mathemerize\",\"url\":\"https:\/\/mathemerize.com\/\",\"logo\":{\"@type\":\"ImageObject\",\"inLanguage\":\"en-US\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/\",\"url\":\"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1\",\"contentUrl\":\"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1\",\"width\":140,\"height\":96,\"caption\":\"Mathemerize\"},\"image\":{\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/\"},\"sameAs\":[\"https:\/\/www.instagram.com\/mathemerize\/\"]},{\"@type\":\"Person\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df\",\"name\":\"mathemerize\",\"image\":{\"@type\":\"ImageObject\",\"inLanguage\":\"en-US\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/person\/image\/\",\"url\":\"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g\",\"contentUrl\":\"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g\",\"caption\":\"mathemerize\"},\"sameAs\":[\"https:\/\/mathemerize.com\"],\"url\":\"https:\/\/mathemerize.com\/author\/mathemerize\/\"}]}<\/script>\n<!-- \/ Yoast SEO plugin. -->","yoast_head_json":{"title":"Inverse Trignometric Function Examples - Mathemerize","description":"Solve these Inverse Trignometric Function examples to practice and test your knowledge of Inverse Trignometric Function concepts.","robots":{"index":"index","follow":"follow","max-snippet":"max-snippet:-1","max-image-preview":"max-image-preview:large","max-video-preview":"max-video-preview:-1"},"canonical":"https:\/\/mathemerize.com\/inverse-trignometric-function-examples\/","og_locale":"en_US","og_type":"article","og_title":"Inverse Trignometric Function Examples - Mathemerize","og_description":"Solve these Inverse Trignometric Function examples to practice and test your knowledge of Inverse Trignometric Function concepts.","og_url":"https:\/\/mathemerize.com\/inverse-trignometric-function-examples\/","og_site_name":"Mathemerize","article_published_time":"2021-10-04T16:26:58+00:00","article_modified_time":"2021-10-04T16:28:06+00:00","author":"mathemerize","twitter_card":"summary_large_image","twitter_misc":{"Written by":"mathemerize","Est. reading time":"2 minutes"},"schema":{"@context":"https:\/\/schema.org","@graph":[{"@type":"Article","@id":"https:\/\/mathemerize.com\/inverse-trignometric-function-examples\/#article","isPartOf":{"@id":"https:\/\/mathemerize.com\/inverse-trignometric-function-examples\/"},"author":{"name":"mathemerize","@id":"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df"},"headline":"Inverse Trignometric Function Examples","datePublished":"2021-10-04T16:26:58+00:00","dateModified":"2021-10-04T16:28:06+00:00","mainEntityOfPage":{"@id":"https:\/\/mathemerize.com\/inverse-trignometric-function-examples\/"},"wordCount":424,"commentCount":0,"publisher":{"@id":"https:\/\/mathemerize.com\/#organization"},"articleSection":["Inverse Trigonometric Function"],"inLanguage":"en-US","potentialAction":[{"@type":"CommentAction","name":"Comment","target":["https:\/\/mathemerize.com\/inverse-trignometric-function-examples\/#respond"]}]},{"@type":"WebPage","@id":"https:\/\/mathemerize.com\/inverse-trignometric-function-examples\/","url":"https:\/\/mathemerize.com\/inverse-trignometric-function-examples\/","name":"Inverse Trignometric Function Examples - Mathemerize","isPartOf":{"@id":"https:\/\/mathemerize.com\/#website"},"datePublished":"2021-10-04T16:26:58+00:00","dateModified":"2021-10-04T16:28:06+00:00","description":"Solve these Inverse Trignometric Function examples to practice and test your knowledge of Inverse Trignometric Function concepts.","breadcrumb":{"@id":"https:\/\/mathemerize.com\/inverse-trignometric-function-examples\/#breadcrumb"},"inLanguage":"en-US","potentialAction":[{"@type":"ReadAction","target":["https:\/\/mathemerize.com\/inverse-trignometric-function-examples\/"]}]},{"@type":"BreadcrumbList","@id":"https:\/\/mathemerize.com\/inverse-trignometric-function-examples\/#breadcrumb","itemListElement":[{"@type":"ListItem","position":1,"name":"Home","item":"https:\/\/mathemerize.com\/"},{"@type":"ListItem","position":2,"name":"Inverse Trignometric Function Examples"}]},{"@type":"WebSite","@id":"https:\/\/mathemerize.com\/#website","url":"https:\/\/mathemerize.com\/","name":"Mathemerize","description":"Maths Tutorials - Study Math Online","publisher":{"@id":"https:\/\/mathemerize.com\/#organization"},"potentialAction":[{"@type":"SearchAction","target":{"@type":"EntryPoint","urlTemplate":"https:\/\/mathemerize.com\/?s={search_term_string}"},"query-input":"required name=search_term_string"}],"inLanguage":"en-US"},{"@type":"Organization","@id":"https:\/\/mathemerize.com\/#organization","name":"Mathemerize","url":"https:\/\/mathemerize.com\/","logo":{"@type":"ImageObject","inLanguage":"en-US","@id":"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/","url":"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1","contentUrl":"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1","width":140,"height":96,"caption":"Mathemerize"},"image":{"@id":"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/"},"sameAs":["https:\/\/www.instagram.com\/mathemerize\/"]},{"@type":"Person","@id":"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df","name":"mathemerize","image":{"@type":"ImageObject","inLanguage":"en-US","@id":"https:\/\/mathemerize.com\/#\/schema\/person\/image\/","url":"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g","contentUrl":"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g","caption":"mathemerize"},"sameAs":["https:\/\/mathemerize.com"],"url":"https:\/\/mathemerize.com\/author\/mathemerize\/"}]}},"jetpack_featured_media_url":"","_links":{"self":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts\/6006"}],"collection":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/users\/1"}],"replies":[{"embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/comments?post=6006"}],"version-history":[{"count":2,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts\/6006\/revisions"}],"predecessor-version":[{"id":6008,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts\/6006\/revisions\/6008"}],"wp:attachment":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/media?parent=6006"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/categories?post=6006"},{"taxonomy":"post_tag","embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/tags?post=6006"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}