Example 1 : <\/span>Find the value of \\(sin^{-1}({-\\sqrt{3}\\over 2})\\) + \\(cos^{-1}(cos({7\\pi\\over 6}))\\).<\/p>\n Solution : <\/span>\\(sin^{-1}({-\\sqrt{3}\\over 2})\\) = – \\(sin^{-1}({\\sqrt{3}\\over 2})\\) = \\(-\\pi\\over 3\\) Example 2 : <\/span> Prove that : \\(cos^{-1}{12\\over 13}\\) + \\(sin^{-1}{3\\over 5}\\) = \\(sin^{-1}{56\\over 65}\\)<\/p>\n Solution : <\/span>We have, L.H.S. = \\(cos^{-1}{12\\over 13}\\) + \\(sin^{-1}{3\\over 5}\\) = \\(tan^{-1}{5\\over 12}\\) + \\(tan^{-1}{3\\over 4}\\) Example 3 : <\/span> Evaluate \\(sin^{-1}(sin10)\\)<\/p>\n Solution : <\/span>We know that \\(sin^{-1}(sinx)\\) = x, if \\(-\\pi\\over 2\\) \\(\\le\\) x \\(\\le\\) \\(\\pi\\over 2\\) Example 4 : <\/span> Prove that : \\(sin^{-1}{12\\over 13}\\) + \\(cot^{-1}{4\\over 3}\\) + \\(tan^{-1}{63\\over 16}\\) = \\(\\pi\\)<\/p>\n Solution : <\/span>We have, A = \\(sin^{-1}{12\\over 13}\\) + \\(cot^{-1}{4\\over 3}\\) + \\(tan^{-1}{63\\over 16}\\) Example 5 : <\/span>Solve the equation : 2\\(tan^{-1}({2x+1})\\) = \\(cos^{-1}x\\)<\/p>\n Solution : <\/span>Here, 2\\(tan^{-1}({2x+1})\\) = \\(cos^{-1}x\\) Practice these given inverse trignometric function examples to test your knowledge on concepts of inverse trigonometric function.<\/p>\n \n <\/div>\n <\/div>\n","protected":false},"excerpt":{"rendered":" Here you will learn some inverse trignometric function examples for better understanding of inverse trigonometric function concepts. Example 1 : Find the value of \\(sin^{-1}({-\\sqrt{3}\\over 2})\\) + \\(cos^{-1}(cos({7\\pi\\over 6}))\\). Solution : \\(sin^{-1}({-\\sqrt{3}\\over 2})\\) = – \\(sin^{-1}({\\sqrt{3}\\over 2})\\) = \\(-\\pi\\over 3\\) \\(cos^{-1}(cos({7\\pi\\over 6}))\\) = \\(cos^{-1}(cos({2\\pi – {5\\pi\\over 6}}))\\) = \\(cos^{-1}(cos({5\\pi\\over 6}))\\) = \\(5\\pi\\over 6\\) Hence \\(sin^{-1}({-\\sqrt{3}\\over …<\/p>\n
\n \\(cos^{-1}(cos({7\\pi\\over 6}))\\) = \\(cos^{-1}(cos({2\\pi – {5\\pi\\over 6}}))\\) = \\(cos^{-1}(cos({5\\pi\\over 6}))\\) = \\(5\\pi\\over 6\\)
\n Hence \\(sin^{-1}({-\\sqrt{3}\\over 2})\\) + \\(cos^{-1}(cos({7\\pi\\over 6}))\\) = \\(-\\pi\\over 3\\) + \\(5\\pi\\over 6\\) = \\(\\pi\\over 2\\)<\/p>\n
\n\n \n
\n \\(\\because\\) [ \\(cos^{-1}{12\\over 13}\\) = \\(tan^{-1}{5\\over 12}\\) & \\(sin^{-1}{3\\over 5}\\) = \\(tan^{-1}{3\\over 4}\\) ]
\n L.H.S. = \\(tan^{-1}({{{5\\over 12} + {3\\over 4}}\\over {1 – {5\\over 12}.{3\\over 4}}})\\) = \\(tan^{-1}{56\\over 33}\\)
\n R.H.S. = \\(sin^{-1}{56\\over 65}\\) = \\(tan^{-1}{56\\over 33}\\)
\n L.H.S = R.H.S. Hence Proved.<\/p>\n
\n\n \n
\n Here, x = 10 radians which does not lie between -\\(\\pi\\over 2\\) and \\(\\pi\\over 2\\)
\n But, \\(3\\pi\\) – x i.e. \\(3\\pi\\) – 10 lie between -\\(\\pi\\over 2\\) and \\(\\pi\\over 2\\)
\n Also, sin(\\(3\\pi\\) – 10) = sin 10
\n \\(\\therefore\\) \\(sin^{-1}(sin10)\\) = \\(sin^{-1}(sin(3\\pi – 10)\\) = (\\(3\\pi\\) – 10)<\/p>\n
\n\n \n
\n A = \\(tan^{-1}{12\\over 5}\\) + \\(tan^{-1}{3\\over 4}\\) + \\(tan^{-1}{63\\over 16}\\)
\n \\(\\implies\\) A = \\(\\pi\\) + \\(tan^{-1}({{{12\\over 5} + {3\\over 4}}\\over {1 – {12\\over 5} \\times {3\\over 4}}})\\) + \\(tan^{-1}{63\\over 16}\\)
\n \\(\\implies\\) A = \\(\\pi\\) + \\(tan^{-1}{63\\over (-16)}\\) + \\(tan^{-1}{63\\over 16}\\)
\n = \\(\\pi\\) – \\(tan^{-1}{63\\over 16}\\) + \\(tan^{-1}{63\\over 16}\\)
\n = \\(\\pi\\) <\/p>\n
\n\n
\n cos(2\\(tan^{-1}({2x+1})\\)) = x { We Know cos2x = \\({1-tan^2x\\over {1+tan^2x}}\\)}
\n \\(\\therefore\\) \\({{1-{(2x+1)}^2}\\over {1-{(2x+1)}^2}}\\) = x \\(\\implies\\) (1 – 2x – 1)(1 + 2x + 1) = x(\\(4x^2 + 4x + 2\\))
\n \\(\\implies\\) -2x.2(x + 1) = 2x(\\(2x^2 + 2x + 1\\)) \\(\\implies\\) 2x(\\(2x^2 + 2x + 1 + 2x + 2\\)) = 0
\n \\(\\implies\\) x = 0 or \\(2x^2 + 4x + 3\\) = 0 { No Solution }
\n Verify x = 0
\n \\(2tan^{-1}(1)\\) = \\(cos^{-1}(1)\\) \\(\\implies\\) \\(\\pi\\over 2\\) = \\(\\pi\\over 2\\)
\n \\(\\therefore\\) x = 0 is only the solution.<\/p>\n
\n