Example 1 : <\/span> If \\(log_e x\\) – \\(log_e y\\) = a, \\(log_e y\\) – \\(log_e z\\) = b & \\(log_e z\\) – \\(log_e x\\) = c, then find the value of \\(({x\\over y})^{b-c}\\) \\(\\times\\)\n \\(({y\\over z})^{c-a}\\) \\(\\times\\) \\(({z\\over x})^{a-b}\\). <\/p>\n Solution : <\/span>\\(log_e x\\) – \\(log_e y\\) = a \\(\\implies\\) \\(log_e {x\\over y}\\) = a \\(\\implies\\) \\(x\\over y\\) = \\(e^a\\) Example 2 : <\/span> If \\(log_a x\\) = p and \\(log_b {x^2}\\) = q then \\(log_x \\sqrt{ab}\\) is equal to- <\/p>\n Solution : <\/span>\\(log_a x\\) = p \\(\\implies\\) \\(a^p\\) = x \\(\\implies\\) a = \\(x^{1\/p}\\) Example 3 : <\/span>Solve for x : \\(2^{x+2}\\) > \\(({1\\over 4})^{1\/x}\\)<\/p>\n Solution : <\/span> We have \\(2^{x+2}\\) > \\(2^{-2\/x}\\). Practice these given logarithm examples to test your knowledge on concepts of logarithm.<\/p>\n <\/div>\n <\/div>\n","protected":false},"excerpt":{"rendered":" Here you will learn some logarithm examples for better understanding of logarithm concepts. Example 1 : If \\(log_e x\\) – \\(log_e y\\) = a, \\(log_e y\\) – \\(log_e z\\) = b & \\(log_e z\\) – \\(log_e x\\) = c, then find the value of \\(({x\\over y})^{b-c}\\) \\(\\times\\) \\(({y\\over z})^{c-a}\\) \\(\\times\\) \\(({z\\over x})^{a-b}\\). Solution : \\(log_e …<\/p>\n
\\(log_e y\\) – \\(log_e z\\) = b \\(\\implies\\) \\(log_e {y\\over z}\\) = b \\(\\implies\\) \\(y\\over z\\) = \\(e^b\\)
\\(log_e z\\) – \\(log_e x\\) = c \\(\\implies\\) \\(log_e {z\\over x}\\) = c \\(\\implies\\) \\(z\\over x\\) = \\(e^c\\)
\\(\\therefore\\) \\((e^a)^{b-c}\\) \\(\\times\\) \\((e^b)^{c-a}\\) \\(\\times\\) \\((e^c)^{a-b}\\)
= \\(e^{a(b-c)+b(c-a)+c(a-b)}\\) = \\(e^0\\) = 1<\/p>\n
\n\n \n
Similarly \\(b^q\\) = \\(x^2\\) \\(\\implies\\) b = \\(x^{2\/q}\\)
\n Now, \\(log_x \\sqrt{ab}\\) = \\(log_x \\sqrt{x^{1\/p}x^{2\/q}}\\) = \\(log_x x^{({1\\over p}+{2\\over q}){1\\over 2}}\\) = \\(1\\over {2p}\\) + \\(1\\over q\\).\n <\/p>
\n\n \n
Since the base 2 > 1, we have x + 2 > \\(-2\\over x\\)
(the sign of inequality is retained)
Now x + 2 + \\(-2\\over x\\) > 0 \\(\\implies\\) \\({x^2 + 2x + 2}\\over x\\) > 0
\\(\\implies\\) \\(({x+1})^2 + 1\\over x\\) > 0
\\(\\implies\\) x \\(\\in\\) (0,\\(\\infty\\)).<\/p>\n
\n