Example 1 : <\/span> If A = {2, 4} and B = {3, 4, 5} then (A \\(\\cap\\) B) \\(\\times\\) (A \\(\\cup\\) B)<\/p>\n Solution : <\/span>(A \\(\\cap\\) B) = {4} and (A \\(\\cup\\) B) = {2, 3, 4, 5} Example 2 : <\/span>If n(A) = 7 , n(B) = 8 and n(A \\(\\cap\\) B) = 4,then find- Solution : <\/span>(i) 11 Example 3 : <\/span> If N is a set of first 10 natural numbers and a relation R is defined as a + 2b = 10 where a, b \\(\\in\\) N. find inverse of R.<\/p>\n Solution : <\/span>R = {(2, 4), (4, 3), (6, 2), (8, 1)} Practice these given relations examples to test your knowledge on concepts of relations.<\/p>\n <\/div>\n <\/div>\n","protected":false},"excerpt":{"rendered":" Here you will learn some relations examples for better understanding of relation concepts. Example 1 : If A = {2, 4} and B = {3, 4, 5} then (A \\(\\cap\\) B) \\(\\times\\) (A \\(\\cup\\) B) Solution : (A \\(\\cap\\) B) = {4} and (A \\(\\cup\\) B) = {2, 3, 4, 5} \\(\\therefore\\) (A \\(\\cap\\) B) …<\/p>\n
\\(\\therefore\\) (A \\(\\cap\\) B) \\(\\times\\) (A \\(\\cup\\) B) = {(4, 2), (4, 3), (4, 4), (4, 5)}<\/p>\n
\n\n \n
(i) n(A \\(\\cup\\) B)
(ii) n(A \\(\\times B\\)
(iii) n((B \\(\\times\\) A)\\(\\times\\) A)
(iv) n((A \\(\\times\\) B) \\(\\cap\\) (B \\(\\times\\) A))
(v) n((A \\(\\times\\) B) \\(\\cup\\) (B \\(\\times\\) A))<\/p>\n
(ii) 7 \\(\\times\\) 8 = 56
\n (iii) 56 \\(\\times\\) 7 = 392
\n (iv) 16
(v) 56 + 56 – 16 = 96\n <\/p>
\n\n \n
\\(R^{-1}\\) = {(4, 2), (3, 4), (2, 6), (1, 8)}<\/p>\n
\n